5 = ( 1 + 9.6 \% ) ^ { n }
Whakaoti mō n
n=\log_{1.096}\left(5\right)\approx 17.557404545
Tohaina
Kua tāruatia ki te papatopenga
5=\left(1+\frac{96}{1000}\right)^{n}
Whakarohaina te \frac{9.6}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
5=\left(1+\frac{12}{125}\right)^{n}
Whakahekea te hautanga \frac{96}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
5=\left(\frac{137}{125}\right)^{n}
Tāpirihia te 1 ki te \frac{12}{125}, ka \frac{137}{125}.
\left(\frac{137}{125}\right)^{n}=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(\left(\frac{137}{125}\right)^{n})=\log(5)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
n\log(\frac{137}{125})=\log(5)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n=\frac{\log(5)}{\log(\frac{137}{125})}
Whakawehea ngā taha e rua ki te \log(\frac{137}{125}).
n=\log_{\frac{137}{125}}\left(5\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}