Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5=\left(1+\frac{96}{1000}\right)^{n}
Whakarohaina te \frac{9.6}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
5=\left(1+\frac{12}{125}\right)^{n}
Whakahekea te hautanga \frac{96}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
5=\left(\frac{137}{125}\right)^{n}
Tāpirihia te 1 ki te \frac{12}{125}, ka \frac{137}{125}.
\left(\frac{137}{125}\right)^{n}=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(\left(\frac{137}{125}\right)^{n})=\log(5)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
n\log(\frac{137}{125})=\log(5)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n=\frac{\log(5)}{\log(\frac{137}{125})}
Whakawehea ngā taha e rua ki te \log(\frac{137}{125}).
n=\log_{\frac{137}{125}}\left(5\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).