Whakaoti mō x
x=\frac{\sqrt{165}}{35}-\frac{1}{7}\approx 0.224149502
x=-\frac{\sqrt{165}}{35}-\frac{1}{7}\approx -0.509863788
Graph
Tohaina
Kua tāruatia ki te papatopenga
5=10x^{2}+\frac{1}{2}\times 50\left(x+0.2\right)^{2}
Whakareatia te \frac{1}{2} ki te 20, ka 10.
5=10x^{2}+25\left(x+0.2\right)^{2}
Whakareatia te \frac{1}{2} ki te 50, ka 25.
5=10x^{2}+25\left(x^{2}+0.4x+0.04\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+0.2\right)^{2}.
5=10x^{2}+25x^{2}+10x+1
Whakamahia te āhuatanga tohatoha hei whakarea te 25 ki te x^{2}+0.4x+0.04.
5=35x^{2}+10x+1
Pahekotia te 10x^{2} me 25x^{2}, ka 35x^{2}.
35x^{2}+10x+1=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
35x^{2}+10x+1-5=0
Tangohia te 5 mai i ngā taha e rua.
35x^{2}+10x-4=0
Tangohia te 5 i te 1, ka -4.
x=\frac{-10±\sqrt{10^{2}-4\times 35\left(-4\right)}}{2\times 35}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 35 mō a, 10 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 35\left(-4\right)}}{2\times 35}
Pūrua 10.
x=\frac{-10±\sqrt{100-140\left(-4\right)}}{2\times 35}
Whakareatia -4 ki te 35.
x=\frac{-10±\sqrt{100+560}}{2\times 35}
Whakareatia -140 ki te -4.
x=\frac{-10±\sqrt{660}}{2\times 35}
Tāpiri 100 ki te 560.
x=\frac{-10±2\sqrt{165}}{2\times 35}
Tuhia te pūtakerua o te 660.
x=\frac{-10±2\sqrt{165}}{70}
Whakareatia 2 ki te 35.
x=\frac{2\sqrt{165}-10}{70}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{165}}{70} ina he tāpiri te ±. Tāpiri -10 ki te 2\sqrt{165}.
x=\frac{\sqrt{165}}{35}-\frac{1}{7}
Whakawehe -10+2\sqrt{165} ki te 70.
x=\frac{-2\sqrt{165}-10}{70}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{165}}{70} ina he tango te ±. Tango 2\sqrt{165} mai i -10.
x=-\frac{\sqrt{165}}{35}-\frac{1}{7}
Whakawehe -10-2\sqrt{165} ki te 70.
x=\frac{\sqrt{165}}{35}-\frac{1}{7} x=-\frac{\sqrt{165}}{35}-\frac{1}{7}
Kua oti te whārite te whakatau.
5=10x^{2}+\frac{1}{2}\times 50\left(x+0.2\right)^{2}
Whakareatia te \frac{1}{2} ki te 20, ka 10.
5=10x^{2}+25\left(x+0.2\right)^{2}
Whakareatia te \frac{1}{2} ki te 50, ka 25.
5=10x^{2}+25\left(x^{2}+0.4x+0.04\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+0.2\right)^{2}.
5=10x^{2}+25x^{2}+10x+1
Whakamahia te āhuatanga tohatoha hei whakarea te 25 ki te x^{2}+0.4x+0.04.
5=35x^{2}+10x+1
Pahekotia te 10x^{2} me 25x^{2}, ka 35x^{2}.
35x^{2}+10x+1=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
35x^{2}+10x=5-1
Tangohia te 1 mai i ngā taha e rua.
35x^{2}+10x=4
Tangohia te 1 i te 5, ka 4.
\frac{35x^{2}+10x}{35}=\frac{4}{35}
Whakawehea ngā taha e rua ki te 35.
x^{2}+\frac{10}{35}x=\frac{4}{35}
Mā te whakawehe ki te 35 ka wetekia te whakareanga ki te 35.
x^{2}+\frac{2}{7}x=\frac{4}{35}
Whakahekea te hautanga \frac{10}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=\frac{4}{35}+\left(\frac{1}{7}\right)^{2}
Whakawehea te \frac{2}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{7}. Nā, tāpiria te pūrua o te \frac{1}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{7}x+\frac{1}{49}=\frac{4}{35}+\frac{1}{49}
Pūruatia \frac{1}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{7}x+\frac{1}{49}=\frac{33}{245}
Tāpiri \frac{4}{35} ki te \frac{1}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{7}\right)^{2}=\frac{33}{245}
Tauwehea x^{2}+\frac{2}{7}x+\frac{1}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{\frac{33}{245}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{7}=\frac{\sqrt{165}}{35} x+\frac{1}{7}=-\frac{\sqrt{165}}{35}
Whakarūnātia.
x=\frac{\sqrt{165}}{35}-\frac{1}{7} x=-\frac{\sqrt{165}}{35}-\frac{1}{7}
Me tango \frac{1}{7} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}