Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{50}{10}=\frac{1}{10}\text{ and }\frac{1}{10}=\frac{1}{15}-20
Me tahuri te 5 ki te hautau \frac{50}{10}.
\text{false}\text{ and }\frac{1}{10}=\frac{1}{15}-20
Whakatauritea te \frac{50}{10} me te \frac{1}{10}.
\text{false}\text{ and }\frac{1}{10}=\frac{1}{15}-\frac{300}{15}
Me tahuri te 20 ki te hautau \frac{300}{15}.
\text{false}\text{ and }\frac{1}{10}=\frac{1-300}{15}
Tā te mea he rite te tauraro o \frac{1}{15} me \frac{300}{15}, me tango rāua mā te tango i ō raua taurunga.
\text{false}\text{ and }\frac{1}{10}=-\frac{299}{15}
Tangohia te 300 i te 1, ka -299.
\text{false}\text{ and }\frac{3}{30}=-\frac{598}{30}
Ko te maha noa iti rawa atu o 10 me 15 ko 30. Me tahuri \frac{1}{10} me -\frac{299}{15} ki te hautau me te tautūnga 30.
\text{false}\text{ and }\text{false}
Whakatauritea te \frac{3}{30} me te -\frac{598}{30}.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}