Whakaoti mō x
x=\frac{\sqrt{30}}{30}\approx 0.182574186
x=-\frac{\sqrt{30}}{30}\approx -0.182574186
Graph
Pātaitai
Polynomial
5 = \frac{ 1 }{ 2 } 250 { x }^{ 2 } + \frac{ 1 }{ 2 } 50 { \left(x+02 \right) }^{ 2 }
Tohaina
Kua tāruatia ki te papatopenga
5=125x^{2}+\frac{1}{2}\times 50\left(x+0\times 2\right)^{2}
Whakareatia te \frac{1}{2} ki te 250, ka 125.
5=125x^{2}+25\left(x+0\times 2\right)^{2}
Whakareatia te \frac{1}{2} ki te 50, ka 25.
5=125x^{2}+25\left(x+0\right)^{2}
Whakareatia te 0 ki te 2, ka 0.
5=125x^{2}+25x^{2}
Ko te tau i tāpiria he kore ka hua koia tonu.
5=150x^{2}
Pahekotia te 125x^{2} me 25x^{2}, ka 150x^{2}.
150x^{2}=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{5}{150}
Whakawehea ngā taha e rua ki te 150.
x^{2}=\frac{1}{30}
Whakahekea te hautanga \frac{5}{150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x=\frac{\sqrt{30}}{30} x=-\frac{\sqrt{30}}{30}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5=125x^{2}+\frac{1}{2}\times 50\left(x+0\times 2\right)^{2}
Whakareatia te \frac{1}{2} ki te 250, ka 125.
5=125x^{2}+25\left(x+0\times 2\right)^{2}
Whakareatia te \frac{1}{2} ki te 50, ka 25.
5=125x^{2}+25\left(x+0\right)^{2}
Whakareatia te 0 ki te 2, ka 0.
5=125x^{2}+25x^{2}
Ko te tau i tāpiria he kore ka hua koia tonu.
5=150x^{2}
Pahekotia te 125x^{2} me 25x^{2}, ka 150x^{2}.
150x^{2}=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
150x^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 150\left(-5\right)}}{2\times 150}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 150 mō a, 0 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 150\left(-5\right)}}{2\times 150}
Pūrua 0.
x=\frac{0±\sqrt{-600\left(-5\right)}}{2\times 150}
Whakareatia -4 ki te 150.
x=\frac{0±\sqrt{3000}}{2\times 150}
Whakareatia -600 ki te -5.
x=\frac{0±10\sqrt{30}}{2\times 150}
Tuhia te pūtakerua o te 3000.
x=\frac{0±10\sqrt{30}}{300}
Whakareatia 2 ki te 150.
x=\frac{\sqrt{30}}{30}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{30}}{300} ina he tāpiri te ±.
x=-\frac{\sqrt{30}}{30}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{30}}{300} ina he tango te ±.
x=\frac{\sqrt{30}}{30} x=-\frac{\sqrt{30}}{30}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}