Aromātai
35x-18y
Whakaroha
35x-18y
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{6}\times 42x+\frac{5}{6}\left(-12\right)y-8y
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{5}{6} ki te 42x-12y.
\frac{5\times 42}{6}x+\frac{5}{6}\left(-12\right)y-8y
Tuhia te \frac{5}{6}\times 42 hei hautanga kotahi.
\frac{210}{6}x+\frac{5}{6}\left(-12\right)y-8y
Whakareatia te 5 ki te 42, ka 210.
35x+\frac{5}{6}\left(-12\right)y-8y
Whakawehea te 210 ki te 6, kia riro ko 35.
35x+\frac{5\left(-12\right)}{6}y-8y
Tuhia te \frac{5}{6}\left(-12\right) hei hautanga kotahi.
35x+\frac{-60}{6}y-8y
Whakareatia te 5 ki te -12, ka -60.
35x-10y-8y
Whakawehea te -60 ki te 6, kia riro ko -10.
35x-18y
Pahekotia te -10y me -8y, ka -18y.
\frac{5}{6}\times 42x+\frac{5}{6}\left(-12\right)y-8y
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{5}{6} ki te 42x-12y.
\frac{5\times 42}{6}x+\frac{5}{6}\left(-12\right)y-8y
Tuhia te \frac{5}{6}\times 42 hei hautanga kotahi.
\frac{210}{6}x+\frac{5}{6}\left(-12\right)y-8y
Whakareatia te 5 ki te 42, ka 210.
35x+\frac{5}{6}\left(-12\right)y-8y
Whakawehea te 210 ki te 6, kia riro ko 35.
35x+\frac{5\left(-12\right)}{6}y-8y
Tuhia te \frac{5}{6}\left(-12\right) hei hautanga kotahi.
35x+\frac{-60}{6}y-8y
Whakareatia te 5 ki te -12, ka -60.
35x-10y-8y
Whakawehea te -60 ki te 6, kia riro ko -10.
35x-18y
Pahekotia te -10y me -8y, ka -18y.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}