Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

20+\left(24-8x\right)x=8
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,12.
20+24x-8x^{2}=8
Whakamahia te āhuatanga tohatoha hei whakarea te 24-8x ki te x.
20+24x-8x^{2}-8=0
Tangohia te 8 mai i ngā taha e rua.
12+24x-8x^{2}=0
Tangohia te 8 i te 20, ka 12.
-8x^{2}+24x+12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-24±\sqrt{24^{2}-4\left(-8\right)\times 12}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, 24 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-8\right)\times 12}}{2\left(-8\right)}
Pūrua 24.
x=\frac{-24±\sqrt{576+32\times 12}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
x=\frac{-24±\sqrt{576+384}}{2\left(-8\right)}
Whakareatia 32 ki te 12.
x=\frac{-24±\sqrt{960}}{2\left(-8\right)}
Tāpiri 576 ki te 384.
x=\frac{-24±8\sqrt{15}}{2\left(-8\right)}
Tuhia te pūtakerua o te 960.
x=\frac{-24±8\sqrt{15}}{-16}
Whakareatia 2 ki te -8.
x=\frac{8\sqrt{15}-24}{-16}
Nā, me whakaoti te whārite x=\frac{-24±8\sqrt{15}}{-16} ina he tāpiri te ±. Tāpiri -24 ki te 8\sqrt{15}.
x=\frac{3-\sqrt{15}}{2}
Whakawehe -24+8\sqrt{15} ki te -16.
x=\frac{-8\sqrt{15}-24}{-16}
Nā, me whakaoti te whārite x=\frac{-24±8\sqrt{15}}{-16} ina he tango te ±. Tango 8\sqrt{15} mai i -24.
x=\frac{\sqrt{15}+3}{2}
Whakawehe -24-8\sqrt{15} ki te -16.
x=\frac{3-\sqrt{15}}{2} x=\frac{\sqrt{15}+3}{2}
Kua oti te whārite te whakatau.
20+\left(24-8x\right)x=8
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,12.
20+24x-8x^{2}=8
Whakamahia te āhuatanga tohatoha hei whakarea te 24-8x ki te x.
24x-8x^{2}=8-20
Tangohia te 20 mai i ngā taha e rua.
24x-8x^{2}=-12
Tangohia te 20 i te 8, ka -12.
-8x^{2}+24x=-12
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-8x^{2}+24x}{-8}=-\frac{12}{-8}
Whakawehea ngā taha e rua ki te -8.
x^{2}+\frac{24}{-8}x=-\frac{12}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x^{2}-3x=-\frac{12}{-8}
Whakawehe 24 ki te -8.
x^{2}-3x=\frac{3}{2}
Whakahekea te hautanga \frac{-12}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{3}{2}+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{15}{4}
Tāpiri \frac{3}{2} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{2}\right)^{2}=\frac{15}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{15}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{15}}{2} x-\frac{3}{2}=-\frac{\sqrt{15}}{2}
Whakarūnātia.
x=\frac{\sqrt{15}+3}{2} x=\frac{3-\sqrt{15}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.