Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
11=\frac{1-\left(\sin(45)\right)^{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Tāpirihia te 5 ki te 6, ka 11.
11=\frac{1-\left(\frac{\sqrt{2}}{2}\right)^{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
11=\frac{1-\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
11=\frac{1-\frac{2}{2^{2}}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
11=\frac{1-\frac{2}{4}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
11=\frac{1-\frac{1}{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
11=\frac{\frac{1}{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Tangohia te \frac{1}{2} i te 1, ka \frac{1}{2}.
11=\frac{\frac{1}{2}}{1+\left(\frac{\sqrt{2}}{2}\right)^{2}}+\left(\tan(45)\right)^{2}
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
11=\frac{\frac{1}{2}}{1+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}+\left(\tan(45)\right)^{2}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
11=\frac{\frac{1}{2}}{\frac{2^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}+\left(\tan(45)\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2^{2}}{2^{2}}.
11=\frac{\frac{1}{2}}{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}+\left(\tan(45)\right)^{2}
Tā te mea he rite te tauraro o \frac{2^{2}}{2^{2}} me \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
11=\frac{2^{2}}{2\left(2^{2}+\left(\sqrt{2}\right)^{2}\right)}+\left(\tan(45)\right)^{2}
Whakawehe \frac{1}{2} ki te \frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}} mā te whakarea \frac{1}{2} ki te tau huripoki o \frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}.
11=\frac{2}{\left(\sqrt{2}\right)^{2}+2^{2}}+\left(\tan(45)\right)^{2}
Me whakakore tahi te 2 i te taurunga me te tauraro.
11=\frac{2}{2+2^{2}}+\left(\tan(45)\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
11=\frac{2}{2+4}+\left(\tan(45)\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
11=\frac{2}{6}+\left(\tan(45)\right)^{2}
Tāpirihia te 2 ki te 4, ka 6.
11=\frac{1}{3}+\left(\tan(45)\right)^{2}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
11=\frac{1}{3}+1^{2}
Tīkina te uara \tan(45) mai i te ripanga uara pākoki.
11=\frac{1}{3}+1
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
11=\frac{4}{3}
Tāpirihia te \frac{1}{3} ki te 1, ka \frac{4}{3}.
\frac{33}{3}=\frac{4}{3}
Me tahuri te 11 ki te hautau \frac{33}{3}.
\text{false}
Whakatauritea te \frac{33}{3} me te \frac{4}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}