Tīpoka ki ngā ihirangi matua
Whakaoti mō c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5+c^{2}-2c+1+5+\left(c+4\right)^{2}=35
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(c-1\right)^{2}.
6+c^{2}-2c+5+\left(c+4\right)^{2}=35
Tāpirihia te 5 ki te 1, ka 6.
11+c^{2}-2c+\left(c+4\right)^{2}=35
Tāpirihia te 6 ki te 5, ka 11.
11+c^{2}-2c+c^{2}+8c+16=35
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(c+4\right)^{2}.
11+2c^{2}-2c+8c+16=35
Pahekotia te c^{2} me c^{2}, ka 2c^{2}.
11+2c^{2}+6c+16=35
Pahekotia te -2c me 8c, ka 6c.
27+2c^{2}+6c=35
Tāpirihia te 11 ki te 16, ka 27.
27+2c^{2}+6c-35=0
Tangohia te 35 mai i ngā taha e rua.
-8+2c^{2}+6c=0
Tangohia te 35 i te 27, ka -8.
-4+c^{2}+3c=0
Whakawehea ngā taha e rua ki te 2.
c^{2}+3c-4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=1\left(-4\right)=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei c^{2}+ac+bc-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,4 -2,2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
-1+4=3 -2+2=0
Tātaihia te tapeke mō ia takirua.
a=-1 b=4
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(c^{2}-c\right)+\left(4c-4\right)
Tuhia anō te c^{2}+3c-4 hei \left(c^{2}-c\right)+\left(4c-4\right).
c\left(c-1\right)+4\left(c-1\right)
Tauwehea te c i te tuatahi me te 4 i te rōpū tuarua.
\left(c-1\right)\left(c+4\right)
Whakatauwehea atu te kīanga pātahi c-1 mā te whakamahi i te āhuatanga tātai tohatoha.
c=1 c=-4
Hei kimi otinga whārite, me whakaoti te c-1=0 me te c+4=0.
5+c^{2}-2c+1+5+\left(c+4\right)^{2}=35
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(c-1\right)^{2}.
6+c^{2}-2c+5+\left(c+4\right)^{2}=35
Tāpirihia te 5 ki te 1, ka 6.
11+c^{2}-2c+\left(c+4\right)^{2}=35
Tāpirihia te 6 ki te 5, ka 11.
11+c^{2}-2c+c^{2}+8c+16=35
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(c+4\right)^{2}.
11+2c^{2}-2c+8c+16=35
Pahekotia te c^{2} me c^{2}, ka 2c^{2}.
11+2c^{2}+6c+16=35
Pahekotia te -2c me 8c, ka 6c.
27+2c^{2}+6c=35
Tāpirihia te 11 ki te 16, ka 27.
27+2c^{2}+6c-35=0
Tangohia te 35 mai i ngā taha e rua.
-8+2c^{2}+6c=0
Tangohia te 35 i te 27, ka -8.
2c^{2}+6c-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-6±\sqrt{6^{2}-4\times 2\left(-8\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 6 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-6±\sqrt{36-4\times 2\left(-8\right)}}{2\times 2}
Pūrua 6.
c=\frac{-6±\sqrt{36-8\left(-8\right)}}{2\times 2}
Whakareatia -4 ki te 2.
c=\frac{-6±\sqrt{36+64}}{2\times 2}
Whakareatia -8 ki te -8.
c=\frac{-6±\sqrt{100}}{2\times 2}
Tāpiri 36 ki te 64.
c=\frac{-6±10}{2\times 2}
Tuhia te pūtakerua o te 100.
c=\frac{-6±10}{4}
Whakareatia 2 ki te 2.
c=\frac{4}{4}
Nā, me whakaoti te whārite c=\frac{-6±10}{4} ina he tāpiri te ±. Tāpiri -6 ki te 10.
c=1
Whakawehe 4 ki te 4.
c=-\frac{16}{4}
Nā, me whakaoti te whārite c=\frac{-6±10}{4} ina he tango te ±. Tango 10 mai i -6.
c=-4
Whakawehe -16 ki te 4.
c=1 c=-4
Kua oti te whārite te whakatau.
5+c^{2}-2c+1+5+\left(c+4\right)^{2}=35
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(c-1\right)^{2}.
6+c^{2}-2c+5+\left(c+4\right)^{2}=35
Tāpirihia te 5 ki te 1, ka 6.
11+c^{2}-2c+\left(c+4\right)^{2}=35
Tāpirihia te 6 ki te 5, ka 11.
11+c^{2}-2c+c^{2}+8c+16=35
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(c+4\right)^{2}.
11+2c^{2}-2c+8c+16=35
Pahekotia te c^{2} me c^{2}, ka 2c^{2}.
11+2c^{2}+6c+16=35
Pahekotia te -2c me 8c, ka 6c.
27+2c^{2}+6c=35
Tāpirihia te 11 ki te 16, ka 27.
2c^{2}+6c=35-27
Tangohia te 27 mai i ngā taha e rua.
2c^{2}+6c=8
Tangohia te 27 i te 35, ka 8.
\frac{2c^{2}+6c}{2}=\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
c^{2}+\frac{6}{2}c=\frac{8}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
c^{2}+3c=\frac{8}{2}
Whakawehe 6 ki te 2.
c^{2}+3c=4
Whakawehe 8 ki te 2.
c^{2}+3c+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
c^{2}+3c+\frac{9}{4}=4+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
c^{2}+3c+\frac{9}{4}=\frac{25}{4}
Tāpiri 4 ki te \frac{9}{4}.
\left(c+\frac{3}{2}\right)^{2}=\frac{25}{4}
Tauwehea c^{2}+3c+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
c+\frac{3}{2}=\frac{5}{2} c+\frac{3}{2}=-\frac{5}{2}
Whakarūnātia.
c=1 c=-4
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.