Whakaoti mō x
x=\frac{\sqrt{21}}{12}+\frac{1}{4}\approx 0.631881308
x=-\frac{\sqrt{21}}{12}+\frac{1}{4}\approx -0.131881308
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x\times 2x+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x.
8xx+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Whakareatia te 4 ki te 2, ka 8.
8x^{2}+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Whakareatia te x ki te x, ka x^{2}.
8x^{2}-18x+12x\times 2x=3-2x\times 2x
Whakareatia te 2 ki te -9, ka -18.
8x^{2}-18x+12x^{2}\times 2=3-2x\times 2x
Whakareatia te x ki te x, ka x^{2}.
8x^{2}-18x+24x^{2}=3-2x\times 2x
Whakareatia te 12 ki te 2, ka 24.
32x^{2}-18x=3-2x\times 2x
Pahekotia te 8x^{2} me 24x^{2}, ka 32x^{2}.
32x^{2}-18x=3-2x^{2}\times 2
Whakareatia te x ki te x, ka x^{2}.
32x^{2}-18x=3-4x^{2}
Whakareatia te -2 ki te 2, ka -4.
32x^{2}-18x-3=-4x^{2}
Tangohia te 3 mai i ngā taha e rua.
32x^{2}-18x-3+4x^{2}=0
Me tāpiri te 4x^{2} ki ngā taha e rua.
36x^{2}-18x-3=0
Pahekotia te 32x^{2} me 4x^{2}, ka 36x^{2}.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 36\left(-3\right)}}{2\times 36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 36 mō a, -18 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 36\left(-3\right)}}{2\times 36}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-144\left(-3\right)}}{2\times 36}
Whakareatia -4 ki te 36.
x=\frac{-\left(-18\right)±\sqrt{324+432}}{2\times 36}
Whakareatia -144 ki te -3.
x=\frac{-\left(-18\right)±\sqrt{756}}{2\times 36}
Tāpiri 324 ki te 432.
x=\frac{-\left(-18\right)±6\sqrt{21}}{2\times 36}
Tuhia te pūtakerua o te 756.
x=\frac{18±6\sqrt{21}}{2\times 36}
Ko te tauaro o -18 ko 18.
x=\frac{18±6\sqrt{21}}{72}
Whakareatia 2 ki te 36.
x=\frac{6\sqrt{21}+18}{72}
Nā, me whakaoti te whārite x=\frac{18±6\sqrt{21}}{72} ina he tāpiri te ±. Tāpiri 18 ki te 6\sqrt{21}.
x=\frac{\sqrt{21}}{12}+\frac{1}{4}
Whakawehe 18+6\sqrt{21} ki te 72.
x=\frac{18-6\sqrt{21}}{72}
Nā, me whakaoti te whārite x=\frac{18±6\sqrt{21}}{72} ina he tango te ±. Tango 6\sqrt{21} mai i 18.
x=-\frac{\sqrt{21}}{12}+\frac{1}{4}
Whakawehe 18-6\sqrt{21} ki te 72.
x=\frac{\sqrt{21}}{12}+\frac{1}{4} x=-\frac{\sqrt{21}}{12}+\frac{1}{4}
Kua oti te whārite te whakatau.
4x\times 2x+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x.
8xx+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Whakareatia te 4 ki te 2, ka 8.
8x^{2}+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Whakareatia te x ki te x, ka x^{2}.
8x^{2}-18x+12x\times 2x=3-2x\times 2x
Whakareatia te 2 ki te -9, ka -18.
8x^{2}-18x+12x^{2}\times 2=3-2x\times 2x
Whakareatia te x ki te x, ka x^{2}.
8x^{2}-18x+24x^{2}=3-2x\times 2x
Whakareatia te 12 ki te 2, ka 24.
32x^{2}-18x=3-2x\times 2x
Pahekotia te 8x^{2} me 24x^{2}, ka 32x^{2}.
32x^{2}-18x=3-2x^{2}\times 2
Whakareatia te x ki te x, ka x^{2}.
32x^{2}-18x=3-4x^{2}
Whakareatia te -2 ki te 2, ka -4.
32x^{2}-18x+4x^{2}=3
Me tāpiri te 4x^{2} ki ngā taha e rua.
36x^{2}-18x=3
Pahekotia te 32x^{2} me 4x^{2}, ka 36x^{2}.
\frac{36x^{2}-18x}{36}=\frac{3}{36}
Whakawehea ngā taha e rua ki te 36.
x^{2}+\left(-\frac{18}{36}\right)x=\frac{3}{36}
Mā te whakawehe ki te 36 ka wetekia te whakareanga ki te 36.
x^{2}-\frac{1}{2}x=\frac{3}{36}
Whakahekea te hautanga \frac{-18}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
x^{2}-\frac{1}{2}x=\frac{1}{12}
Whakahekea te hautanga \frac{3}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{12}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{12}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{7}{48}
Tāpiri \frac{1}{12} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{7}{48}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{7}{48}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{21}}{12} x-\frac{1}{4}=-\frac{\sqrt{21}}{12}
Whakarūnātia.
x=\frac{\sqrt{21}}{12}+\frac{1}{4} x=-\frac{\sqrt{21}}{12}+\frac{1}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}