Whakaoti mō x
x=-8
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+32x=6\left(x+8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x+8.
4x^{2}+32x=6x+48
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x+8.
4x^{2}+32x-6x=48
Tangohia te 6x mai i ngā taha e rua.
4x^{2}+26x=48
Pahekotia te 32x me -6x, ka 26x.
4x^{2}+26x-48=0
Tangohia te 48 mai i ngā taha e rua.
x=\frac{-26±\sqrt{26^{2}-4\times 4\left(-48\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 26 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\times 4\left(-48\right)}}{2\times 4}
Pūrua 26.
x=\frac{-26±\sqrt{676-16\left(-48\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-26±\sqrt{676+768}}{2\times 4}
Whakareatia -16 ki te -48.
x=\frac{-26±\sqrt{1444}}{2\times 4}
Tāpiri 676 ki te 768.
x=\frac{-26±38}{2\times 4}
Tuhia te pūtakerua o te 1444.
x=\frac{-26±38}{8}
Whakareatia 2 ki te 4.
x=\frac{12}{8}
Nā, me whakaoti te whārite x=\frac{-26±38}{8} ina he tāpiri te ±. Tāpiri -26 ki te 38.
x=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{64}{8}
Nā, me whakaoti te whārite x=\frac{-26±38}{8} ina he tango te ±. Tango 38 mai i -26.
x=-8
Whakawehe -64 ki te 8.
x=\frac{3}{2} x=-8
Kua oti te whārite te whakatau.
4x^{2}+32x=6\left(x+8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x+8.
4x^{2}+32x=6x+48
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x+8.
4x^{2}+32x-6x=48
Tangohia te 6x mai i ngā taha e rua.
4x^{2}+26x=48
Pahekotia te 32x me -6x, ka 26x.
\frac{4x^{2}+26x}{4}=\frac{48}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{26}{4}x=\frac{48}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{13}{2}x=\frac{48}{4}
Whakahekea te hautanga \frac{26}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{13}{2}x=12
Whakawehe 48 ki te 4.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=12+\left(\frac{13}{4}\right)^{2}
Whakawehea te \frac{13}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{13}{4}. Nā, tāpiria te pūrua o te \frac{13}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{13}{2}x+\frac{169}{16}=12+\frac{169}{16}
Pūruatia \frac{13}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{361}{16}
Tāpiri 12 ki te \frac{169}{16}.
\left(x+\frac{13}{4}\right)^{2}=\frac{361}{16}
Tauwehea x^{2}+\frac{13}{2}x+\frac{169}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{361}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{13}{4}=\frac{19}{4} x+\frac{13}{4}=-\frac{19}{4}
Whakarūnātia.
x=\frac{3}{2} x=-8
Me tango \frac{13}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}