Whakaoti mō x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+4x=15
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x+1.
4x^{2}+4x-15=0
Tangohia te 15 mai i ngā taha e rua.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-15\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 4 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
Pūrua 4.
x=\frac{-4±\sqrt{16-16\left(-15\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-4±\sqrt{16+240}}{2\times 4}
Whakareatia -16 ki te -15.
x=\frac{-4±\sqrt{256}}{2\times 4}
Tāpiri 16 ki te 240.
x=\frac{-4±16}{2\times 4}
Tuhia te pūtakerua o te 256.
x=\frac{-4±16}{8}
Whakareatia 2 ki te 4.
x=\frac{12}{8}
Nā, me whakaoti te whārite x=\frac{-4±16}{8} ina he tāpiri te ±. Tāpiri -4 ki te 16.
x=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{20}{8}
Nā, me whakaoti te whārite x=\frac{-4±16}{8} ina he tango te ±. Tango 16 mai i -4.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{3}{2} x=-\frac{5}{2}
Kua oti te whārite te whakatau.
4x^{2}+4x=15
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x+1.
\frac{4x^{2}+4x}{4}=\frac{15}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{4}{4}x=\frac{15}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+x=\frac{15}{4}
Whakawehe 4 ki te 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{15}{4}+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=\frac{15+1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=4
Tāpiri \frac{15}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{2}\right)^{2}=4
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=2 x+\frac{1}{2}=-2
Whakarūnātia.
x=\frac{3}{2} x=-\frac{5}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}