Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+4x=15
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x+1.
4x^{2}+4x-15=0
Tangohia te 15 mai i ngā taha e rua.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-15\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 4 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
Pūrua 4.
x=\frac{-4±\sqrt{16-16\left(-15\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-4±\sqrt{16+240}}{2\times 4}
Whakareatia -16 ki te -15.
x=\frac{-4±\sqrt{256}}{2\times 4}
Tāpiri 16 ki te 240.
x=\frac{-4±16}{2\times 4}
Tuhia te pūtakerua o te 256.
x=\frac{-4±16}{8}
Whakareatia 2 ki te 4.
x=\frac{12}{8}
Nā, me whakaoti te whārite x=\frac{-4±16}{8} ina he tāpiri te ±. Tāpiri -4 ki te 16.
x=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{20}{8}
Nā, me whakaoti te whārite x=\frac{-4±16}{8} ina he tango te ±. Tango 16 mai i -4.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{3}{2} x=-\frac{5}{2}
Kua oti te whārite te whakatau.
4x^{2}+4x=15
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x+1.
\frac{4x^{2}+4x}{4}=\frac{15}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{4}{4}x=\frac{15}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+x=\frac{15}{4}
Whakawehe 4 ki te 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{15}{4}+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=\frac{15+1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=4
Tāpiri \frac{15}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{2}\right)^{2}=4
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=2 x+\frac{1}{2}=-2
Whakarūnātia.
x=\frac{3}{2} x=-\frac{5}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.