Whakaoti mō x (complex solution)
x=\frac{-\sqrt{32396195}i+59}{199998}\approx 0.000295003-0.028459112i
x=\frac{59+\sqrt{32396195}i}{199998}\approx 0.000295003+0.028459112i
Graph
Tohaina
Kua tāruatia ki te papatopenga
59x-9^{2}=99999x^{2}
Pahekotia te 4x me 55x, ka 59x.
59x-81=99999x^{2}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
59x-81-99999x^{2}=0
Tangohia te 99999x^{2} mai i ngā taha e rua.
-99999x^{2}+59x-81=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-59±\sqrt{59^{2}-4\left(-99999\right)\left(-81\right)}}{2\left(-99999\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -99999 mō a, 59 mō b, me -81 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-59±\sqrt{3481-4\left(-99999\right)\left(-81\right)}}{2\left(-99999\right)}
Pūrua 59.
x=\frac{-59±\sqrt{3481+399996\left(-81\right)}}{2\left(-99999\right)}
Whakareatia -4 ki te -99999.
x=\frac{-59±\sqrt{3481-32399676}}{2\left(-99999\right)}
Whakareatia 399996 ki te -81.
x=\frac{-59±\sqrt{-32396195}}{2\left(-99999\right)}
Tāpiri 3481 ki te -32399676.
x=\frac{-59±\sqrt{32396195}i}{2\left(-99999\right)}
Tuhia te pūtakerua o te -32396195.
x=\frac{-59±\sqrt{32396195}i}{-199998}
Whakareatia 2 ki te -99999.
x=\frac{-59+\sqrt{32396195}i}{-199998}
Nā, me whakaoti te whārite x=\frac{-59±\sqrt{32396195}i}{-199998} ina he tāpiri te ±. Tāpiri -59 ki te i\sqrt{32396195}.
x=\frac{-\sqrt{32396195}i+59}{199998}
Whakawehe -59+i\sqrt{32396195} ki te -199998.
x=\frac{-\sqrt{32396195}i-59}{-199998}
Nā, me whakaoti te whārite x=\frac{-59±\sqrt{32396195}i}{-199998} ina he tango te ±. Tango i\sqrt{32396195} mai i -59.
x=\frac{59+\sqrt{32396195}i}{199998}
Whakawehe -59-i\sqrt{32396195} ki te -199998.
x=\frac{-\sqrt{32396195}i+59}{199998} x=\frac{59+\sqrt{32396195}i}{199998}
Kua oti te whārite te whakatau.
59x-9^{2}=99999x^{2}
Pahekotia te 4x me 55x, ka 59x.
59x-81=99999x^{2}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
59x-81-99999x^{2}=0
Tangohia te 99999x^{2} mai i ngā taha e rua.
59x-99999x^{2}=81
Me tāpiri te 81 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-99999x^{2}+59x=81
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-99999x^{2}+59x}{-99999}=\frac{81}{-99999}
Whakawehea ngā taha e rua ki te -99999.
x^{2}+\frac{59}{-99999}x=\frac{81}{-99999}
Mā te whakawehe ki te -99999 ka wetekia te whakareanga ki te -99999.
x^{2}-\frac{59}{99999}x=\frac{81}{-99999}
Whakawehe 59 ki te -99999.
x^{2}-\frac{59}{99999}x=-\frac{9}{11111}
Whakahekea te hautanga \frac{81}{-99999} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
x^{2}-\frac{59}{99999}x+\left(-\frac{59}{199998}\right)^{2}=-\frac{9}{11111}+\left(-\frac{59}{199998}\right)^{2}
Whakawehea te -\frac{59}{99999}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{59}{199998}. Nā, tāpiria te pūrua o te -\frac{59}{199998} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{59}{99999}x+\frac{3481}{39999200004}=-\frac{9}{11111}+\frac{3481}{39999200004}
Pūruatia -\frac{59}{199998} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{59}{99999}x+\frac{3481}{39999200004}=-\frac{32396195}{39999200004}
Tāpiri -\frac{9}{11111} ki te \frac{3481}{39999200004} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{59}{199998}\right)^{2}=-\frac{32396195}{39999200004}
Tauwehea x^{2}-\frac{59}{99999}x+\frac{3481}{39999200004}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{59}{199998}\right)^{2}}=\sqrt{-\frac{32396195}{39999200004}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{59}{199998}=\frac{\sqrt{32396195}i}{199998} x-\frac{59}{199998}=-\frac{\sqrt{32396195}i}{199998}
Whakarūnātia.
x=\frac{59+\sqrt{32396195}i}{199998} x=\frac{-\sqrt{32396195}i+59}{199998}
Me tāpiri \frac{59}{199998} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}