Whakaoti mō x
x=-\frac{z}{2}-\frac{3y}{4}+\frac{3}{4}
Whakaoti mō y
y=-\frac{2z}{3}-\frac{4x}{3}+1
Tohaina
Kua tāruatia ki te papatopenga
4x+2z=3-3y
Tangohia te 3y mai i ngā taha e rua.
4x=3-3y-2z
Tangohia te 2z mai i ngā taha e rua.
4x=3-2z-3y
He hanga arowhānui tō te whārite.
\frac{4x}{4}=\frac{3-2z-3y}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{3-2z-3y}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x=-\frac{z}{2}-\frac{3y}{4}+\frac{3}{4}
Whakawehe 3-3y-2z ki te 4.
3y+2z=3-4x
Tangohia te 4x mai i ngā taha e rua.
3y=3-4x-2z
Tangohia te 2z mai i ngā taha e rua.
3y=3-2z-4x
He hanga arowhānui tō te whārite.
\frac{3y}{3}=\frac{3-2z-4x}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{3-2z-4x}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y=-\frac{2z}{3}-\frac{4x}{3}+1
Whakawehe 3-4x-2z ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}