Whakaoti mō x
x = \frac{49 - \sqrt{97}}{32} \approx 1.223473194
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x}=-\left(4x-6\right)
Me tango 4x-6 mai i ngā taha e rua o te whārite.
\sqrt{x}=-4x-\left(-6\right)
Hei kimi i te tauaro o 4x-6, kimihia te tauaro o ia taurangi.
\sqrt{x}=-4x+6
Ko te tauaro o -6 ko 6.
\left(\sqrt{x}\right)^{2}=\left(-4x+6\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(-4x+6\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=16x^{2}-48x+36
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-4x+6\right)^{2}.
x-16x^{2}=-48x+36
Tangohia te 16x^{2} mai i ngā taha e rua.
x-16x^{2}+48x=36
Me tāpiri te 48x ki ngā taha e rua.
49x-16x^{2}=36
Pahekotia te x me 48x, ka 49x.
49x-16x^{2}-36=0
Tangohia te 36 mai i ngā taha e rua.
-16x^{2}+49x-36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-49±\sqrt{49^{2}-4\left(-16\right)\left(-36\right)}}{2\left(-16\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -16 mō a, 49 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-49±\sqrt{2401-4\left(-16\right)\left(-36\right)}}{2\left(-16\right)}
Pūrua 49.
x=\frac{-49±\sqrt{2401+64\left(-36\right)}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
x=\frac{-49±\sqrt{2401-2304}}{2\left(-16\right)}
Whakareatia 64 ki te -36.
x=\frac{-49±\sqrt{97}}{2\left(-16\right)}
Tāpiri 2401 ki te -2304.
x=\frac{-49±\sqrt{97}}{-32}
Whakareatia 2 ki te -16.
x=\frac{\sqrt{97}-49}{-32}
Nā, me whakaoti te whārite x=\frac{-49±\sqrt{97}}{-32} ina he tāpiri te ±. Tāpiri -49 ki te \sqrt{97}.
x=\frac{49-\sqrt{97}}{32}
Whakawehe -49+\sqrt{97} ki te -32.
x=\frac{-\sqrt{97}-49}{-32}
Nā, me whakaoti te whārite x=\frac{-49±\sqrt{97}}{-32} ina he tango te ±. Tango \sqrt{97} mai i -49.
x=\frac{\sqrt{97}+49}{32}
Whakawehe -49-\sqrt{97} ki te -32.
x=\frac{49-\sqrt{97}}{32} x=\frac{\sqrt{97}+49}{32}
Kua oti te whārite te whakatau.
4\times \frac{49-\sqrt{97}}{32}+\sqrt{\frac{49-\sqrt{97}}{32}}-6=0
Whakakapia te \frac{49-\sqrt{97}}{32} mō te x i te whārite 4x+\sqrt{x}-6=0.
0=0
Whakarūnātia. Ko te uara x=\frac{49-\sqrt{97}}{32} kua ngata te whārite.
4\times \frac{\sqrt{97}+49}{32}+\sqrt{\frac{\sqrt{97}+49}{32}}-6=0
Whakakapia te \frac{\sqrt{97}+49}{32} mō te x i te whārite 4x+\sqrt{x}-6=0.
\frac{1}{4}\times 97^{\frac{1}{2}}+\frac{1}{4}=0
Whakarūnātia. Ko te uara x=\frac{\sqrt{97}+49}{32} kāore e ngata ana ki te whārite.
x=\frac{49-\sqrt{97}}{32}
Ko te whārite \sqrt{x}=6-4x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}