Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4xx+7=3x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
4x^{2}+7=3x
Whakareatia te x ki te x, ka x^{2}.
4x^{2}+7-3x=0
Tangohia te 3x mai i ngā taha e rua.
4x^{2}-3x+7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\times 7}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -3 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 4\times 7}}{2\times 4}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-16\times 7}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-3\right)±\sqrt{9-112}}{2\times 4}
Whakareatia -16 ki te 7.
x=\frac{-\left(-3\right)±\sqrt{-103}}{2\times 4}
Tāpiri 9 ki te -112.
x=\frac{-\left(-3\right)±\sqrt{103}i}{2\times 4}
Tuhia te pūtakerua o te -103.
x=\frac{3±\sqrt{103}i}{2\times 4}
Ko te tauaro o -3 ko 3.
x=\frac{3±\sqrt{103}i}{8}
Whakareatia 2 ki te 4.
x=\frac{3+\sqrt{103}i}{8}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{103}i}{8} ina he tāpiri te ±. Tāpiri 3 ki te i\sqrt{103}.
x=\frac{-\sqrt{103}i+3}{8}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{103}i}{8} ina he tango te ±. Tango i\sqrt{103} mai i 3.
x=\frac{3+\sqrt{103}i}{8} x=\frac{-\sqrt{103}i+3}{8}
Kua oti te whārite te whakatau.
4xx+7=3x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
4x^{2}+7=3x
Whakareatia te x ki te x, ka x^{2}.
4x^{2}+7-3x=0
Tangohia te 3x mai i ngā taha e rua.
4x^{2}-3x=-7
Tangohia te 7 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}-3x}{4}=-\frac{7}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}-\frac{3}{4}x=-\frac{7}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=-\frac{7}{4}+\left(-\frac{3}{8}\right)^{2}
Whakawehea te -\frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{8}. Nā, tāpiria te pūrua o te -\frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{7}{4}+\frac{9}{64}
Pūruatia -\frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{103}{64}
Tāpiri -\frac{7}{4} ki te \frac{9}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{8}\right)^{2}=-\frac{103}{64}
Tauwehea x^{2}-\frac{3}{4}x+\frac{9}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{-\frac{103}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{8}=\frac{\sqrt{103}i}{8} x-\frac{3}{8}=-\frac{\sqrt{103}i}{8}
Whakarūnātia.
x=\frac{3+\sqrt{103}i}{8} x=\frac{-\sqrt{103}i+3}{8}
Me tāpiri \frac{3}{8} ki ngā taha e rua o te whārite.