Whakaoti mō x
x = \frac{5 \sqrt{105} + 1}{16} \approx 3.264672114
x=\frac{1-5\sqrt{105}}{16}\approx -3.139672114
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}\times 2-x=12\times 7-2
Whakareatia te x ki te x, ka x^{2}.
8x^{2}-x=12\times 7-2
Whakareatia te 4 ki te 2, ka 8.
8x^{2}-x=84-2
Whakareatia te 12 ki te 7, ka 84.
8x^{2}-x=82
Tangohia te 2 i te 84, ka 82.
8x^{2}-x-82=0
Tangohia te 82 mai i ngā taha e rua.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 8\left(-82\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -1 mō b, me -82 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-32\left(-82\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-1\right)±\sqrt{1+2624}}{2\times 8}
Whakareatia -32 ki te -82.
x=\frac{-\left(-1\right)±\sqrt{2625}}{2\times 8}
Tāpiri 1 ki te 2624.
x=\frac{-\left(-1\right)±5\sqrt{105}}{2\times 8}
Tuhia te pūtakerua o te 2625.
x=\frac{1±5\sqrt{105}}{2\times 8}
Ko te tauaro o -1 ko 1.
x=\frac{1±5\sqrt{105}}{16}
Whakareatia 2 ki te 8.
x=\frac{5\sqrt{105}+1}{16}
Nā, me whakaoti te whārite x=\frac{1±5\sqrt{105}}{16} ina he tāpiri te ±. Tāpiri 1 ki te 5\sqrt{105}.
x=\frac{1-5\sqrt{105}}{16}
Nā, me whakaoti te whārite x=\frac{1±5\sqrt{105}}{16} ina he tango te ±. Tango 5\sqrt{105} mai i 1.
x=\frac{5\sqrt{105}+1}{16} x=\frac{1-5\sqrt{105}}{16}
Kua oti te whārite te whakatau.
4x^{2}\times 2-x=12\times 7-2
Whakareatia te x ki te x, ka x^{2}.
8x^{2}-x=12\times 7-2
Whakareatia te 4 ki te 2, ka 8.
8x^{2}-x=84-2
Whakareatia te 12 ki te 7, ka 84.
8x^{2}-x=82
Tangohia te 2 i te 84, ka 82.
\frac{8x^{2}-x}{8}=\frac{82}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}-\frac{1}{8}x=\frac{82}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}-\frac{1}{8}x=\frac{41}{4}
Whakahekea te hautanga \frac{82}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{8}x+\left(-\frac{1}{16}\right)^{2}=\frac{41}{4}+\left(-\frac{1}{16}\right)^{2}
Whakawehea te -\frac{1}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{16}. Nā, tāpiria te pūrua o te -\frac{1}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{8}x+\frac{1}{256}=\frac{41}{4}+\frac{1}{256}
Pūruatia -\frac{1}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{8}x+\frac{1}{256}=\frac{2625}{256}
Tāpiri \frac{41}{4} ki te \frac{1}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{16}\right)^{2}=\frac{2625}{256}
Tauwehea x^{2}-\frac{1}{8}x+\frac{1}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{16}\right)^{2}}=\sqrt{\frac{2625}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{16}=\frac{5\sqrt{105}}{16} x-\frac{1}{16}=-\frac{5\sqrt{105}}{16}
Whakarūnātia.
x=\frac{5\sqrt{105}+1}{16} x=\frac{1-5\sqrt{105}}{16}
Me tāpiri \frac{1}{16} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}