Whakaoti mō x
x = \frac{3 \sqrt{257} - 3}{16} \approx 2.818353664
x=\frac{-3\sqrt{257}-3}{16}\approx -3.193353664
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}\times 2+3x=72
Whakareatia te x ki te x, ka x^{2}.
8x^{2}+3x=72
Whakareatia te 4 ki te 2, ka 8.
8x^{2}+3x-72=0
Tangohia te 72 mai i ngā taha e rua.
x=\frac{-3±\sqrt{3^{2}-4\times 8\left(-72\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 3 mō b, me -72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 8\left(-72\right)}}{2\times 8}
Pūrua 3.
x=\frac{-3±\sqrt{9-32\left(-72\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-3±\sqrt{9+2304}}{2\times 8}
Whakareatia -32 ki te -72.
x=\frac{-3±\sqrt{2313}}{2\times 8}
Tāpiri 9 ki te 2304.
x=\frac{-3±3\sqrt{257}}{2\times 8}
Tuhia te pūtakerua o te 2313.
x=\frac{-3±3\sqrt{257}}{16}
Whakareatia 2 ki te 8.
x=\frac{3\sqrt{257}-3}{16}
Nā, me whakaoti te whārite x=\frac{-3±3\sqrt{257}}{16} ina he tāpiri te ±. Tāpiri -3 ki te 3\sqrt{257}.
x=\frac{-3\sqrt{257}-3}{16}
Nā, me whakaoti te whārite x=\frac{-3±3\sqrt{257}}{16} ina he tango te ±. Tango 3\sqrt{257} mai i -3.
x=\frac{3\sqrt{257}-3}{16} x=\frac{-3\sqrt{257}-3}{16}
Kua oti te whārite te whakatau.
4x^{2}\times 2+3x=72
Whakareatia te x ki te x, ka x^{2}.
8x^{2}+3x=72
Whakareatia te 4 ki te 2, ka 8.
\frac{8x^{2}+3x}{8}=\frac{72}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}+\frac{3}{8}x=\frac{72}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}+\frac{3}{8}x=9
Whakawehe 72 ki te 8.
x^{2}+\frac{3}{8}x+\left(\frac{3}{16}\right)^{2}=9+\left(\frac{3}{16}\right)^{2}
Whakawehea te \frac{3}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{16}. Nā, tāpiria te pūrua o te \frac{3}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{8}x+\frac{9}{256}=9+\frac{9}{256}
Pūruatia \frac{3}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{2313}{256}
Tāpiri 9 ki te \frac{9}{256}.
\left(x+\frac{3}{16}\right)^{2}=\frac{2313}{256}
Tauwehea x^{2}+\frac{3}{8}x+\frac{9}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{16}\right)^{2}}=\sqrt{\frac{2313}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{16}=\frac{3\sqrt{257}}{16} x+\frac{3}{16}=-\frac{3\sqrt{257}}{16}
Whakarūnātia.
x=\frac{3\sqrt{257}-3}{16} x=\frac{-3\sqrt{257}-3}{16}
Me tango \frac{3}{16} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}