Whakaoti mō x
x=\frac{\sqrt{89}}{6}+\frac{1}{2}\approx 2.072330189
x=-\frac{\sqrt{89}}{6}+\frac{1}{2}\approx -1.072330189
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x\times 9\left(x-1\right)=80
Whakareatia ngā taha e rua o te whārite ki te 8.
36x\left(x-1\right)=80
Whakareatia te 4 ki te 9, ka 36.
36x^{2}-36x=80
Whakamahia te āhuatanga tohatoha hei whakarea te 36x ki te x-1.
36x^{2}-36x-80=0
Tangohia te 80 mai i ngā taha e rua.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 36\left(-80\right)}}{2\times 36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 36 mō a, -36 mō b, me -80 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 36\left(-80\right)}}{2\times 36}
Pūrua -36.
x=\frac{-\left(-36\right)±\sqrt{1296-144\left(-80\right)}}{2\times 36}
Whakareatia -4 ki te 36.
x=\frac{-\left(-36\right)±\sqrt{1296+11520}}{2\times 36}
Whakareatia -144 ki te -80.
x=\frac{-\left(-36\right)±\sqrt{12816}}{2\times 36}
Tāpiri 1296 ki te 11520.
x=\frac{-\left(-36\right)±12\sqrt{89}}{2\times 36}
Tuhia te pūtakerua o te 12816.
x=\frac{36±12\sqrt{89}}{2\times 36}
Ko te tauaro o -36 ko 36.
x=\frac{36±12\sqrt{89}}{72}
Whakareatia 2 ki te 36.
x=\frac{12\sqrt{89}+36}{72}
Nā, me whakaoti te whārite x=\frac{36±12\sqrt{89}}{72} ina he tāpiri te ±. Tāpiri 36 ki te 12\sqrt{89}.
x=\frac{\sqrt{89}}{6}+\frac{1}{2}
Whakawehe 36+12\sqrt{89} ki te 72.
x=\frac{36-12\sqrt{89}}{72}
Nā, me whakaoti te whārite x=\frac{36±12\sqrt{89}}{72} ina he tango te ±. Tango 12\sqrt{89} mai i 36.
x=-\frac{\sqrt{89}}{6}+\frac{1}{2}
Whakawehe 36-12\sqrt{89} ki te 72.
x=\frac{\sqrt{89}}{6}+\frac{1}{2} x=-\frac{\sqrt{89}}{6}+\frac{1}{2}
Kua oti te whārite te whakatau.
4x\times 9\left(x-1\right)=80
Whakareatia ngā taha e rua o te whārite ki te 8.
36x\left(x-1\right)=80
Whakareatia te 4 ki te 9, ka 36.
36x^{2}-36x=80
Whakamahia te āhuatanga tohatoha hei whakarea te 36x ki te x-1.
\frac{36x^{2}-36x}{36}=\frac{80}{36}
Whakawehea ngā taha e rua ki te 36.
x^{2}+\left(-\frac{36}{36}\right)x=\frac{80}{36}
Mā te whakawehe ki te 36 ka wetekia te whakareanga ki te 36.
x^{2}-x=\frac{80}{36}
Whakawehe -36 ki te 36.
x^{2}-x=\frac{20}{9}
Whakahekea te hautanga \frac{80}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{20}{9}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=\frac{20}{9}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{89}{36}
Tāpiri \frac{20}{9} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=\frac{89}{36}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{89}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{89}}{6} x-\frac{1}{2}=-\frac{\sqrt{89}}{6}
Whakarūnātia.
x=\frac{\sqrt{89}}{6}+\frac{1}{2} x=-\frac{\sqrt{89}}{6}+\frac{1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}