Tauwehe
10\left(7x+4\right)^{2}
Aromātai
10\left(7x+4\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
10\left(49x^{2}+56x+16\right)
Tauwehea te 10.
\left(7x+4\right)^{2}
Whakaarohia te 49x^{2}+56x+16. Whakamahia te tikanga tātai pūrua pā, a^{2}+2ab+b^{2}=\left(a+b\right)^{2}, ina a=7x, ina b=4.
10\left(7x+4\right)^{2}
Me tuhi anō te kīanga whakatauwehe katoa.
factor(490x^{2}+560x+160)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(490,560,160)=10
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
10\left(49x^{2}+56x+16\right)
Tauwehea te 10.
\sqrt{49x^{2}}=7x
Kimihia te pūtakerua o te kīanga tau ārahi, 49x^{2}.
\sqrt{16}=4
Kimihia te pūtakerua o te kīanga tau autō, 16.
10\left(7x+4\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
490x^{2}+560x+160=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-560±\sqrt{560^{2}-4\times 490\times 160}}{2\times 490}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-560±\sqrt{313600-4\times 490\times 160}}{2\times 490}
Pūrua 560.
x=\frac{-560±\sqrt{313600-1960\times 160}}{2\times 490}
Whakareatia -4 ki te 490.
x=\frac{-560±\sqrt{313600-313600}}{2\times 490}
Whakareatia -1960 ki te 160.
x=\frac{-560±\sqrt{0}}{2\times 490}
Tāpiri 313600 ki te -313600.
x=\frac{-560±0}{2\times 490}
Tuhia te pūtakerua o te 0.
x=\frac{-560±0}{980}
Whakareatia 2 ki te 490.
490x^{2}+560x+160=490\left(x-\left(-\frac{4}{7}\right)\right)\left(x-\left(-\frac{4}{7}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{4}{7} mō te x_{1} me te -\frac{4}{7} mō te x_{2}.
490x^{2}+560x+160=490\left(x+\frac{4}{7}\right)\left(x+\frac{4}{7}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
490x^{2}+560x+160=490\times \frac{7x+4}{7}\left(x+\frac{4}{7}\right)
Tāpiri \frac{4}{7} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
490x^{2}+560x+160=490\times \frac{7x+4}{7}\times \frac{7x+4}{7}
Tāpiri \frac{4}{7} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
490x^{2}+560x+160=490\times \frac{\left(7x+4\right)\left(7x+4\right)}{7\times 7}
Whakareatia \frac{7x+4}{7} ki te \frac{7x+4}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
490x^{2}+560x+160=490\times \frac{\left(7x+4\right)\left(7x+4\right)}{49}
Whakareatia 7 ki te 7.
490x^{2}+560x+160=10\left(7x+4\right)\left(7x+4\right)
Whakakorea atu te tauwehe pūnoa nui rawa 49 i roto i te 490 me te 49.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}