Whakaoti mō x
x=\frac{6}{7}\approx 0.857142857
Graph
Tohaina
Kua tāruatia ki te papatopenga
49x^{2}-84x+36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-84\right)±\sqrt{\left(-84\right)^{2}-4\times 49\times 36}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, -84 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-84\right)±\sqrt{7056-4\times 49\times 36}}{2\times 49}
Pūrua -84.
x=\frac{-\left(-84\right)±\sqrt{7056-196\times 36}}{2\times 49}
Whakareatia -4 ki te 49.
x=\frac{-\left(-84\right)±\sqrt{7056-7056}}{2\times 49}
Whakareatia -196 ki te 36.
x=\frac{-\left(-84\right)±\sqrt{0}}{2\times 49}
Tāpiri 7056 ki te -7056.
x=-\frac{-84}{2\times 49}
Tuhia te pūtakerua o te 0.
x=\frac{84}{2\times 49}
Ko te tauaro o -84 ko 84.
x=\frac{84}{98}
Whakareatia 2 ki te 49.
x=\frac{6}{7}
Whakahekea te hautanga \frac{84}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
49x^{2}-84x+36=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
49x^{2}-84x+36-36=-36
Me tango 36 mai i ngā taha e rua o te whārite.
49x^{2}-84x=-36
Mā te tango i te 36 i a ia ake anō ka toe ko te 0.
\frac{49x^{2}-84x}{49}=-\frac{36}{49}
Whakawehea ngā taha e rua ki te 49.
x^{2}+\left(-\frac{84}{49}\right)x=-\frac{36}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
x^{2}-\frac{12}{7}x=-\frac{36}{49}
Whakahekea te hautanga \frac{-84}{49} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
x^{2}-\frac{12}{7}x+\left(-\frac{6}{7}\right)^{2}=-\frac{36}{49}+\left(-\frac{6}{7}\right)^{2}
Whakawehea te -\frac{12}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{6}{7}. Nā, tāpiria te pūrua o te -\frac{6}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{12}{7}x+\frac{36}{49}=\frac{-36+36}{49}
Pūruatia -\frac{6}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{12}{7}x+\frac{36}{49}=0
Tāpiri -\frac{36}{49} ki te \frac{36}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{6}{7}\right)^{2}=0
Tauwehea x^{2}-\frac{12}{7}x+\frac{36}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6}{7}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{6}{7}=0 x-\frac{6}{7}=0
Whakarūnātia.
x=\frac{6}{7} x=\frac{6}{7}
Me tāpiri \frac{6}{7} ki ngā taha e rua o te whārite.
x=\frac{6}{7}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}