Whakaoti mō x (complex solution)
x=\frac{-15+10\sqrt{10}i}{49}\approx -0.306122449+0.645362788i
x=\frac{-10\sqrt{10}i-15}{49}\approx -0.306122449-0.645362788i
Graph
Tohaina
Kua tāruatia ki te papatopenga
49x^{2}+30x+25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-30±\sqrt{30^{2}-4\times 49\times 25}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, 30 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 49\times 25}}{2\times 49}
Pūrua 30.
x=\frac{-30±\sqrt{900-196\times 25}}{2\times 49}
Whakareatia -4 ki te 49.
x=\frac{-30±\sqrt{900-4900}}{2\times 49}
Whakareatia -196 ki te 25.
x=\frac{-30±\sqrt{-4000}}{2\times 49}
Tāpiri 900 ki te -4900.
x=\frac{-30±20\sqrt{10}i}{2\times 49}
Tuhia te pūtakerua o te -4000.
x=\frac{-30±20\sqrt{10}i}{98}
Whakareatia 2 ki te 49.
x=\frac{-30+20\sqrt{10}i}{98}
Nā, me whakaoti te whārite x=\frac{-30±20\sqrt{10}i}{98} ina he tāpiri te ±. Tāpiri -30 ki te 20i\sqrt{10}.
x=\frac{-15+10\sqrt{10}i}{49}
Whakawehe -30+20i\sqrt{10} ki te 98.
x=\frac{-20\sqrt{10}i-30}{98}
Nā, me whakaoti te whārite x=\frac{-30±20\sqrt{10}i}{98} ina he tango te ±. Tango 20i\sqrt{10} mai i -30.
x=\frac{-10\sqrt{10}i-15}{49}
Whakawehe -30-20i\sqrt{10} ki te 98.
x=\frac{-15+10\sqrt{10}i}{49} x=\frac{-10\sqrt{10}i-15}{49}
Kua oti te whārite te whakatau.
49x^{2}+30x+25=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
49x^{2}+30x+25-25=-25
Me tango 25 mai i ngā taha e rua o te whārite.
49x^{2}+30x=-25
Mā te tango i te 25 i a ia ake anō ka toe ko te 0.
\frac{49x^{2}+30x}{49}=-\frac{25}{49}
Whakawehea ngā taha e rua ki te 49.
x^{2}+\frac{30}{49}x=-\frac{25}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
x^{2}+\frac{30}{49}x+\left(\frac{15}{49}\right)^{2}=-\frac{25}{49}+\left(\frac{15}{49}\right)^{2}
Whakawehea te \frac{30}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{49}. Nā, tāpiria te pūrua o te \frac{15}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{30}{49}x+\frac{225}{2401}=-\frac{25}{49}+\frac{225}{2401}
Pūruatia \frac{15}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{30}{49}x+\frac{225}{2401}=-\frac{1000}{2401}
Tāpiri -\frac{25}{49} ki te \frac{225}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{15}{49}\right)^{2}=-\frac{1000}{2401}
Tauwehea x^{2}+\frac{30}{49}x+\frac{225}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{49}\right)^{2}}=\sqrt{-\frac{1000}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{15}{49}=\frac{10\sqrt{10}i}{49} x+\frac{15}{49}=-\frac{10\sqrt{10}i}{49}
Whakarūnātia.
x=\frac{-15+10\sqrt{10}i}{49} x=\frac{-10\sqrt{10}i-15}{49}
Me tango \frac{15}{49} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}