Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=112 ab=49\times 64=3136
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 49v^{2}+av+bv+64. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,3136 2,1568 4,784 7,448 8,392 14,224 16,196 28,112 32,98 49,64 56,56
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 3136.
1+3136=3137 2+1568=1570 4+784=788 7+448=455 8+392=400 14+224=238 16+196=212 28+112=140 32+98=130 49+64=113 56+56=112
Tātaihia te tapeke mō ia takirua.
a=56 b=56
Ko te otinga te takirua ka hoatu i te tapeke 112.
\left(49v^{2}+56v\right)+\left(56v+64\right)
Tuhia anō te 49v^{2}+112v+64 hei \left(49v^{2}+56v\right)+\left(56v+64\right).
7v\left(7v+8\right)+8\left(7v+8\right)
Tauwehea te 7v i te tuatahi me te 8 i te rōpū tuarua.
\left(7v+8\right)\left(7v+8\right)
Whakatauwehea atu te kīanga pātahi 7v+8 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(7v+8\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(49v^{2}+112v+64)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(49,112,64)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{49v^{2}}=7v
Kimihia te pūtakerua o te kīanga tau ārahi, 49v^{2}.
\sqrt{64}=8
Kimihia te pūtakerua o te kīanga tau autō, 64.
\left(7v+8\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
49v^{2}+112v+64=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-112±\sqrt{112^{2}-4\times 49\times 64}}{2\times 49}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-112±\sqrt{12544-4\times 49\times 64}}{2\times 49}
Pūrua 112.
v=\frac{-112±\sqrt{12544-196\times 64}}{2\times 49}
Whakareatia -4 ki te 49.
v=\frac{-112±\sqrt{12544-12544}}{2\times 49}
Whakareatia -196 ki te 64.
v=\frac{-112±\sqrt{0}}{2\times 49}
Tāpiri 12544 ki te -12544.
v=\frac{-112±0}{2\times 49}
Tuhia te pūtakerua o te 0.
v=\frac{-112±0}{98}
Whakareatia 2 ki te 49.
49v^{2}+112v+64=49\left(v-\left(-\frac{8}{7}\right)\right)\left(v-\left(-\frac{8}{7}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{8}{7} mō te x_{1} me te -\frac{8}{7} mō te x_{2}.
49v^{2}+112v+64=49\left(v+\frac{8}{7}\right)\left(v+\frac{8}{7}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
49v^{2}+112v+64=49\times \frac{7v+8}{7}\left(v+\frac{8}{7}\right)
Tāpiri \frac{8}{7} ki te v mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
49v^{2}+112v+64=49\times \frac{7v+8}{7}\times \frac{7v+8}{7}
Tāpiri \frac{8}{7} ki te v mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
49v^{2}+112v+64=49\times \frac{\left(7v+8\right)\left(7v+8\right)}{7\times 7}
Whakareatia \frac{7v+8}{7} ki te \frac{7v+8}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
49v^{2}+112v+64=49\times \frac{\left(7v+8\right)\left(7v+8\right)}{49}
Whakareatia 7 ki te 7.
49v^{2}+112v+64=\left(7v+8\right)\left(7v+8\right)
Whakakorea atu te tauwehe pūnoa nui rawa 49 i roto i te 49 me te 49.