Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-3t-4=0
Whakawehea ngā taha e rua ki te 49.
a+b=-3 ab=1\left(-4\right)=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei t^{2}+at+bt-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4 2,-2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
1-4=-3 2-2=0
Tātaihia te tapeke mō ia takirua.
a=-4 b=1
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(t^{2}-4t\right)+\left(t-4\right)
Tuhia anō te t^{2}-3t-4 hei \left(t^{2}-4t\right)+\left(t-4\right).
t\left(t-4\right)+t-4
Whakatauwehea atu t i te t^{2}-4t.
\left(t-4\right)\left(t+1\right)
Whakatauwehea atu te kīanga pātahi t-4 mā te whakamahi i te āhuatanga tātai tohatoha.
t=4 t=-1
Hei kimi otinga whārite, me whakaoti te t-4=0 me te t+1=0.
49t^{2}-147t-196=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-147\right)±\sqrt{\left(-147\right)^{2}-4\times 49\left(-196\right)}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, -147 mō b, me -196 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-147\right)±\sqrt{21609-4\times 49\left(-196\right)}}{2\times 49}
Pūrua -147.
t=\frac{-\left(-147\right)±\sqrt{21609-196\left(-196\right)}}{2\times 49}
Whakareatia -4 ki te 49.
t=\frac{-\left(-147\right)±\sqrt{21609+38416}}{2\times 49}
Whakareatia -196 ki te -196.
t=\frac{-\left(-147\right)±\sqrt{60025}}{2\times 49}
Tāpiri 21609 ki te 38416.
t=\frac{-\left(-147\right)±245}{2\times 49}
Tuhia te pūtakerua o te 60025.
t=\frac{147±245}{2\times 49}
Ko te tauaro o -147 ko 147.
t=\frac{147±245}{98}
Whakareatia 2 ki te 49.
t=\frac{392}{98}
Nā, me whakaoti te whārite t=\frac{147±245}{98} ina he tāpiri te ±. Tāpiri 147 ki te 245.
t=4
Whakawehe 392 ki te 98.
t=-\frac{98}{98}
Nā, me whakaoti te whārite t=\frac{147±245}{98} ina he tango te ±. Tango 245 mai i 147.
t=-1
Whakawehe -98 ki te 98.
t=4 t=-1
Kua oti te whārite te whakatau.
49t^{2}-147t-196=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
49t^{2}-147t-196-\left(-196\right)=-\left(-196\right)
Me tāpiri 196 ki ngā taha e rua o te whārite.
49t^{2}-147t=-\left(-196\right)
Mā te tango i te -196 i a ia ake anō ka toe ko te 0.
49t^{2}-147t=196
Tango -196 mai i 0.
\frac{49t^{2}-147t}{49}=\frac{196}{49}
Whakawehea ngā taha e rua ki te 49.
t^{2}+\left(-\frac{147}{49}\right)t=\frac{196}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
t^{2}-3t=\frac{196}{49}
Whakawehe -147 ki te 49.
t^{2}-3t=4
Whakawehe 196 ki te 49.
t^{2}-3t+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-3t+\frac{9}{4}=4+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-3t+\frac{9}{4}=\frac{25}{4}
Tāpiri 4 ki te \frac{9}{4}.
\left(t-\frac{3}{2}\right)^{2}=\frac{25}{4}
Tauwehea t^{2}-3t+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{3}{2}=\frac{5}{2} t-\frac{3}{2}=-\frac{5}{2}
Whakarūnātia.
t=4 t=-1
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.