Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(7b-3\right)\left(7b+3\right)=0
Whakaarohia te 49b^{2}-9. Tuhia anō te 49b^{2}-9 hei \left(7b\right)^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=\frac{3}{7} b=-\frac{3}{7}
Hei kimi otinga whārite, me whakaoti te 7b-3=0 me te 7b+3=0.
49b^{2}=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
b^{2}=\frac{9}{49}
Whakawehea ngā taha e rua ki te 49.
b=\frac{3}{7} b=-\frac{3}{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
49b^{2}-9=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\times 49\left(-9\right)}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, 0 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 49\left(-9\right)}}{2\times 49}
Pūrua 0.
b=\frac{0±\sqrt{-196\left(-9\right)}}{2\times 49}
Whakareatia -4 ki te 49.
b=\frac{0±\sqrt{1764}}{2\times 49}
Whakareatia -196 ki te -9.
b=\frac{0±42}{2\times 49}
Tuhia te pūtakerua o te 1764.
b=\frac{0±42}{98}
Whakareatia 2 ki te 49.
b=\frac{3}{7}
Nā, me whakaoti te whārite b=\frac{0±42}{98} ina he tāpiri te ±. Whakahekea te hautanga \frac{42}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
b=-\frac{3}{7}
Nā, me whakaoti te whārite b=\frac{0±42}{98} ina he tango te ±. Whakahekea te hautanga \frac{-42}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
b=\frac{3}{7} b=-\frac{3}{7}
Kua oti te whārite te whakatau.