Tauwehe
\left(7x-1\right)^{2}
Aromātai
\left(7x-1\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-14 ab=49\times 1=49
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 49x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-49 -7,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 49.
-1-49=-50 -7-7=-14
Tātaihia te tapeke mō ia takirua.
a=-7 b=-7
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(49x^{2}-7x\right)+\left(-7x+1\right)
Tuhia anō te 49x^{2}-14x+1 hei \left(49x^{2}-7x\right)+\left(-7x+1\right).
7x\left(7x-1\right)-\left(7x-1\right)
Tauwehea te 7x i te tuatahi me te -1 i te rōpū tuarua.
\left(7x-1\right)\left(7x-1\right)
Whakatauwehea atu te kīanga pātahi 7x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(7x-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(49x^{2}-14x+1)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(49,-14,1)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{49x^{2}}=7x
Kimihia te pūtakerua o te kīanga tau ārahi, 49x^{2}.
\left(7x-1\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
49x^{2}-14x+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49}}{2\times 49}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 49}}{2\times 49}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-196}}{2\times 49}
Whakareatia -4 ki te 49.
x=\frac{-\left(-14\right)±\sqrt{0}}{2\times 49}
Tāpiri 196 ki te -196.
x=\frac{-\left(-14\right)±0}{2\times 49}
Tuhia te pūtakerua o te 0.
x=\frac{14±0}{2\times 49}
Ko te tauaro o -14 ko 14.
x=\frac{14±0}{98}
Whakareatia 2 ki te 49.
49x^{2}-14x+1=49\left(x-\frac{1}{7}\right)\left(x-\frac{1}{7}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{7} mō te x_{1} me te \frac{1}{7} mō te x_{2}.
49x^{2}-14x+1=49\times \frac{7x-1}{7}\left(x-\frac{1}{7}\right)
Tango \frac{1}{7} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
49x^{2}-14x+1=49\times \frac{7x-1}{7}\times \frac{7x-1}{7}
Tango \frac{1}{7} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
49x^{2}-14x+1=49\times \frac{\left(7x-1\right)\left(7x-1\right)}{7\times 7}
Whakareatia \frac{7x-1}{7} ki te \frac{7x-1}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
49x^{2}-14x+1=49\times \frac{\left(7x-1\right)\left(7x-1\right)}{49}
Whakareatia 7 ki te 7.
49x^{2}-14x+1=\left(7x-1\right)\left(7x-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 49 i roto i te 49 me te 49.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}