Whakaoti mō x
x = \frac{\sqrt{481} + 13}{24} \approx 1.455488008
x=\frac{13-\sqrt{481}}{24}\approx -0.372154675
Graph
Tohaina
Kua tāruatia ki te papatopenga
48x^{2}-52x-26=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 48\left(-26\right)}}{2\times 48}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 48 mō a, -52 mō b, me -26 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-52\right)±\sqrt{2704-4\times 48\left(-26\right)}}{2\times 48}
Pūrua -52.
x=\frac{-\left(-52\right)±\sqrt{2704-192\left(-26\right)}}{2\times 48}
Whakareatia -4 ki te 48.
x=\frac{-\left(-52\right)±\sqrt{2704+4992}}{2\times 48}
Whakareatia -192 ki te -26.
x=\frac{-\left(-52\right)±\sqrt{7696}}{2\times 48}
Tāpiri 2704 ki te 4992.
x=\frac{-\left(-52\right)±4\sqrt{481}}{2\times 48}
Tuhia te pūtakerua o te 7696.
x=\frac{52±4\sqrt{481}}{2\times 48}
Ko te tauaro o -52 ko 52.
x=\frac{52±4\sqrt{481}}{96}
Whakareatia 2 ki te 48.
x=\frac{4\sqrt{481}+52}{96}
Nā, me whakaoti te whārite x=\frac{52±4\sqrt{481}}{96} ina he tāpiri te ±. Tāpiri 52 ki te 4\sqrt{481}.
x=\frac{\sqrt{481}+13}{24}
Whakawehe 52+4\sqrt{481} ki te 96.
x=\frac{52-4\sqrt{481}}{96}
Nā, me whakaoti te whārite x=\frac{52±4\sqrt{481}}{96} ina he tango te ±. Tango 4\sqrt{481} mai i 52.
x=\frac{13-\sqrt{481}}{24}
Whakawehe 52-4\sqrt{481} ki te 96.
x=\frac{\sqrt{481}+13}{24} x=\frac{13-\sqrt{481}}{24}
Kua oti te whārite te whakatau.
48x^{2}-52x-26=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
48x^{2}-52x-26-\left(-26\right)=-\left(-26\right)
Me tāpiri 26 ki ngā taha e rua o te whārite.
48x^{2}-52x=-\left(-26\right)
Mā te tango i te -26 i a ia ake anō ka toe ko te 0.
48x^{2}-52x=26
Tango -26 mai i 0.
\frac{48x^{2}-52x}{48}=\frac{26}{48}
Whakawehea ngā taha e rua ki te 48.
x^{2}+\left(-\frac{52}{48}\right)x=\frac{26}{48}
Mā te whakawehe ki te 48 ka wetekia te whakareanga ki te 48.
x^{2}-\frac{13}{12}x=\frac{26}{48}
Whakahekea te hautanga \frac{-52}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{13}{12}x=\frac{13}{24}
Whakahekea te hautanga \frac{26}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{13}{12}x+\left(-\frac{13}{24}\right)^{2}=\frac{13}{24}+\left(-\frac{13}{24}\right)^{2}
Whakawehea te -\frac{13}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{24}. Nā, tāpiria te pūrua o te -\frac{13}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{12}x+\frac{169}{576}=\frac{13}{24}+\frac{169}{576}
Pūruatia -\frac{13}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{13}{12}x+\frac{169}{576}=\frac{481}{576}
Tāpiri \frac{13}{24} ki te \frac{169}{576} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{13}{24}\right)^{2}=\frac{481}{576}
Tauwehea x^{2}-\frac{13}{12}x+\frac{169}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{24}\right)^{2}}=\sqrt{\frac{481}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{24}=\frac{\sqrt{481}}{24} x-\frac{13}{24}=-\frac{\sqrt{481}}{24}
Whakarūnātia.
x=\frac{\sqrt{481}+13}{24} x=\frac{13-\sqrt{481}}{24}
Me tāpiri \frac{13}{24} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}