Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

48x^{2}+240x-1800=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-240±\sqrt{240^{2}-4\times 48\left(-1800\right)}}{2\times 48}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-240±\sqrt{57600-4\times 48\left(-1800\right)}}{2\times 48}
Pūrua 240.
x=\frac{-240±\sqrt{57600-192\left(-1800\right)}}{2\times 48}
Whakareatia -4 ki te 48.
x=\frac{-240±\sqrt{57600+345600}}{2\times 48}
Whakareatia -192 ki te -1800.
x=\frac{-240±\sqrt{403200}}{2\times 48}
Tāpiri 57600 ki te 345600.
x=\frac{-240±240\sqrt{7}}{2\times 48}
Tuhia te pūtakerua o te 403200.
x=\frac{-240±240\sqrt{7}}{96}
Whakareatia 2 ki te 48.
x=\frac{240\sqrt{7}-240}{96}
Nā, me whakaoti te whārite x=\frac{-240±240\sqrt{7}}{96} ina he tāpiri te ±. Tāpiri -240 ki te 240\sqrt{7}.
x=\frac{5\sqrt{7}-5}{2}
Whakawehe -240+240\sqrt{7} ki te 96.
x=\frac{-240\sqrt{7}-240}{96}
Nā, me whakaoti te whārite x=\frac{-240±240\sqrt{7}}{96} ina he tango te ±. Tango 240\sqrt{7} mai i -240.
x=\frac{-5\sqrt{7}-5}{2}
Whakawehe -240-240\sqrt{7} ki te 96.
48x^{2}+240x-1800=48\left(x-\frac{5\sqrt{7}-5}{2}\right)\left(x-\frac{-5\sqrt{7}-5}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-5+5\sqrt{7}}{2} mō te x_{1} me te \frac{-5-5\sqrt{7}}{2} mō te x_{2}.