Aromātai
\frac{565}{12}\approx 47.083333333
Tauwehe
\frac{5 \cdot 113}{2 ^ {2} \cdot 3} = 47\frac{1}{12} = 47.083333333333336
Tohaina
Kua tāruatia ki te papatopenga
\frac{144}{3}-\frac{2}{3}-\frac{1}{4}
Me tahuri te 48 ki te hautau \frac{144}{3}.
\frac{144-2}{3}-\frac{1}{4}
Tā te mea he rite te tauraro o \frac{144}{3} me \frac{2}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{142}{3}-\frac{1}{4}
Tangohia te 2 i te 144, ka 142.
\frac{568}{12}-\frac{3}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{142}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{568-3}{12}
Tā te mea he rite te tauraro o \frac{568}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{565}{12}
Tangohia te 3 i te 568, ka 565.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}