48 \div (1+20 \% )
Aromātai
40
Tauwehe
2^{3}\times 5
Tohaina
Kua tāruatia ki te papatopenga
\frac{48}{1+\frac{1}{5}}
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{48}{\frac{5}{5}+\frac{1}{5}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{48}{\frac{5+1}{5}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{1}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{48}{\frac{6}{5}}
Tāpirihia te 5 ki te 1, ka 6.
48\times \frac{5}{6}
Whakawehe 48 ki te \frac{6}{5} mā te whakarea 48 ki te tau huripoki o \frac{6}{5}.
\frac{48\times 5}{6}
Tuhia te 48\times \frac{5}{6} hei hautanga kotahi.
\frac{240}{6}
Whakareatia te 48 ki te 5, ka 240.
40
Whakawehea te 240 ki te 6, kia riro ko 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}