Aromātai
\frac{75}{2}=37.5
Tauwehe
\frac{3 \cdot 5 ^ {2}}{2} = 37\frac{1}{2} = 37.5
Tohaina
Kua tāruatia ki te papatopenga
48\times \frac{3}{8}+52\times \frac{3}{8}
Whakawehe 48 ki te \frac{8}{3} mā te whakarea 48 ki te tau huripoki o \frac{8}{3}.
\frac{48\times 3}{8}+52\times \frac{3}{8}
Tuhia te 48\times \frac{3}{8} hei hautanga kotahi.
\frac{144}{8}+52\times \frac{3}{8}
Whakareatia te 48 ki te 3, ka 144.
18+52\times \frac{3}{8}
Whakawehea te 144 ki te 8, kia riro ko 18.
18+\frac{52\times 3}{8}
Tuhia te 52\times \frac{3}{8} hei hautanga kotahi.
18+\frac{156}{8}
Whakareatia te 52 ki te 3, ka 156.
18+\frac{39}{2}
Whakahekea te hautanga \frac{156}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{36}{2}+\frac{39}{2}
Me tahuri te 18 ki te hautau \frac{36}{2}.
\frac{36+39}{2}
Tā te mea he rite te tauraro o \frac{36}{2} me \frac{39}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{75}{2}
Tāpirihia te 36 ki te 39, ka 75.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}