Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

46x^{2}-18x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 46\times 3}}{2\times 46}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 46 mō a, -18 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 46\times 3}}{2\times 46}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-184\times 3}}{2\times 46}
Whakareatia -4 ki te 46.
x=\frac{-\left(-18\right)±\sqrt{324-552}}{2\times 46}
Whakareatia -184 ki te 3.
x=\frac{-\left(-18\right)±\sqrt{-228}}{2\times 46}
Tāpiri 324 ki te -552.
x=\frac{-\left(-18\right)±2\sqrt{57}i}{2\times 46}
Tuhia te pūtakerua o te -228.
x=\frac{18±2\sqrt{57}i}{2\times 46}
Ko te tauaro o -18 ko 18.
x=\frac{18±2\sqrt{57}i}{92}
Whakareatia 2 ki te 46.
x=\frac{18+2\sqrt{57}i}{92}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{57}i}{92} ina he tāpiri te ±. Tāpiri 18 ki te 2i\sqrt{57}.
x=\frac{9+\sqrt{57}i}{46}
Whakawehe 18+2i\sqrt{57} ki te 92.
x=\frac{-2\sqrt{57}i+18}{92}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{57}i}{92} ina he tango te ±. Tango 2i\sqrt{57} mai i 18.
x=\frac{-\sqrt{57}i+9}{46}
Whakawehe 18-2i\sqrt{57} ki te 92.
x=\frac{9+\sqrt{57}i}{46} x=\frac{-\sqrt{57}i+9}{46}
Kua oti te whārite te whakatau.
46x^{2}-18x+3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
46x^{2}-18x+3-3=-3
Me tango 3 mai i ngā taha e rua o te whārite.
46x^{2}-18x=-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
\frac{46x^{2}-18x}{46}=-\frac{3}{46}
Whakawehea ngā taha e rua ki te 46.
x^{2}+\left(-\frac{18}{46}\right)x=-\frac{3}{46}
Mā te whakawehe ki te 46 ka wetekia te whakareanga ki te 46.
x^{2}-\frac{9}{23}x=-\frac{3}{46}
Whakahekea te hautanga \frac{-18}{46} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{9}{23}x+\left(-\frac{9}{46}\right)^{2}=-\frac{3}{46}+\left(-\frac{9}{46}\right)^{2}
Whakawehea te -\frac{9}{23}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{46}. Nā, tāpiria te pūrua o te -\frac{9}{46} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{23}x+\frac{81}{2116}=-\frac{3}{46}+\frac{81}{2116}
Pūruatia -\frac{9}{46} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{23}x+\frac{81}{2116}=-\frac{57}{2116}
Tāpiri -\frac{3}{46} ki te \frac{81}{2116} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{46}\right)^{2}=-\frac{57}{2116}
Tauwehea x^{2}-\frac{9}{23}x+\frac{81}{2116}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{46}\right)^{2}}=\sqrt{-\frac{57}{2116}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{46}=\frac{\sqrt{57}i}{46} x-\frac{9}{46}=-\frac{\sqrt{57}i}{46}
Whakarūnātia.
x=\frac{9+\sqrt{57}i}{46} x=\frac{-\sqrt{57}i+9}{46}
Me tāpiri \frac{9}{46} ki ngā taha e rua o te whārite.