46 \times 125 + 1 \frac { 1 } { 4 } \times 43 - 09 \times 125 \% - 1
Aromātai
\frac{23211}{4}=5802.75
Tauwehe
\frac{3 ^ {2} \cdot 2579}{2 ^ {2}} = 5802\frac{3}{4} = 5802.75
Tohaina
Kua tāruatia ki te papatopenga
5750+\frac{1\times 4+1}{4}\times 43-0\times 9\times \frac{125}{100}-1
Whakareatia te 46 ki te 125, ka 5750.
5750+\frac{4+1}{4}\times 43-0\times 9\times \frac{125}{100}-1
Whakareatia te 1 ki te 4, ka 4.
5750+\frac{5}{4}\times 43-0\times 9\times \frac{125}{100}-1
Tāpirihia te 4 ki te 1, ka 5.
5750+\frac{5\times 43}{4}-0\times 9\times \frac{125}{100}-1
Tuhia te \frac{5}{4}\times 43 hei hautanga kotahi.
5750+\frac{215}{4}-0\times 9\times \frac{125}{100}-1
Whakareatia te 5 ki te 43, ka 215.
\frac{23000}{4}+\frac{215}{4}-0\times 9\times \frac{125}{100}-1
Me tahuri te 5750 ki te hautau \frac{23000}{4}.
\frac{23000+215}{4}-0\times 9\times \frac{125}{100}-1
Tā te mea he rite te tauraro o \frac{23000}{4} me \frac{215}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{23215}{4}-0\times 9\times \frac{125}{100}-1
Tāpirihia te 23000 ki te 215, ka 23215.
\frac{23215}{4}-0\times \frac{125}{100}-1
Whakareatia te 0 ki te 9, ka 0.
\frac{23215}{4}-0\times \frac{5}{4}-1
Whakahekea te hautanga \frac{125}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{23215}{4}-0-1
Whakareatia te 0 ki te \frac{5}{4}, ka 0.
\frac{23215}{4}-1
Tangohia te 0 i te \frac{23215}{4}, ka \frac{23215}{4}.
\frac{23215}{4}-\frac{4}{4}
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{23215-4}{4}
Tā te mea he rite te tauraro o \frac{23215}{4} me \frac{4}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{23211}{4}
Tangohia te 4 i te 23215, ka 23211.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}