Whakaoti mō x
x=5
x=45
Graph
Tohaina
Kua tāruatia ki te papatopenga
450=100x-2x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 100-2x.
100x-2x^{2}=450
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
100x-2x^{2}-450=0
Tangohia te 450 mai i ngā taha e rua.
-2x^{2}+100x-450=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-100±\sqrt{100^{2}-4\left(-2\right)\left(-450\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 100 mō b, me -450 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-2\right)\left(-450\right)}}{2\left(-2\right)}
Pūrua 100.
x=\frac{-100±\sqrt{10000+8\left(-450\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-100±\sqrt{10000-3600}}{2\left(-2\right)}
Whakareatia 8 ki te -450.
x=\frac{-100±\sqrt{6400}}{2\left(-2\right)}
Tāpiri 10000 ki te -3600.
x=\frac{-100±80}{2\left(-2\right)}
Tuhia te pūtakerua o te 6400.
x=\frac{-100±80}{-4}
Whakareatia 2 ki te -2.
x=-\frac{20}{-4}
Nā, me whakaoti te whārite x=\frac{-100±80}{-4} ina he tāpiri te ±. Tāpiri -100 ki te 80.
x=5
Whakawehe -20 ki te -4.
x=-\frac{180}{-4}
Nā, me whakaoti te whārite x=\frac{-100±80}{-4} ina he tango te ±. Tango 80 mai i -100.
x=45
Whakawehe -180 ki te -4.
x=5 x=45
Kua oti te whārite te whakatau.
450=100x-2x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 100-2x.
100x-2x^{2}=450
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2x^{2}+100x=450
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+100x}{-2}=\frac{450}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{100}{-2}x=\frac{450}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-50x=\frac{450}{-2}
Whakawehe 100 ki te -2.
x^{2}-50x=-225
Whakawehe 450 ki te -2.
x^{2}-50x+\left(-25\right)^{2}=-225+\left(-25\right)^{2}
Whakawehea te -50, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -25. Nā, tāpiria te pūrua o te -25 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-50x+625=-225+625
Pūrua -25.
x^{2}-50x+625=400
Tāpiri -225 ki te 625.
\left(x-25\right)^{2}=400
Tauwehea x^{2}-50x+625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{400}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-25=20 x-25=-20
Whakarūnātia.
x=45 x=5
Me tāpiri 25 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}