Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

450=2x\left(x+15\right)
Me whakakore te \pi ki ngā taha e rua.
450=2x^{2}+30x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+15.
2x^{2}+30x=450
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+30x-450=0
Tangohia te 450 mai i ngā taha e rua.
x=\frac{-30±\sqrt{30^{2}-4\times 2\left(-450\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 30 mō b, me -450 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 2\left(-450\right)}}{2\times 2}
Pūrua 30.
x=\frac{-30±\sqrt{900-8\left(-450\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-30±\sqrt{900+3600}}{2\times 2}
Whakareatia -8 ki te -450.
x=\frac{-30±\sqrt{4500}}{2\times 2}
Tāpiri 900 ki te 3600.
x=\frac{-30±30\sqrt{5}}{2\times 2}
Tuhia te pūtakerua o te 4500.
x=\frac{-30±30\sqrt{5}}{4}
Whakareatia 2 ki te 2.
x=\frac{30\sqrt{5}-30}{4}
Nā, me whakaoti te whārite x=\frac{-30±30\sqrt{5}}{4} ina he tāpiri te ±. Tāpiri -30 ki te 30\sqrt{5}.
x=\frac{15\sqrt{5}-15}{2}
Whakawehe -30+30\sqrt{5} ki te 4.
x=\frac{-30\sqrt{5}-30}{4}
Nā, me whakaoti te whārite x=\frac{-30±30\sqrt{5}}{4} ina he tango te ±. Tango 30\sqrt{5} mai i -30.
x=\frac{-15\sqrt{5}-15}{2}
Whakawehe -30-30\sqrt{5} ki te 4.
x=\frac{15\sqrt{5}-15}{2} x=\frac{-15\sqrt{5}-15}{2}
Kua oti te whārite te whakatau.
450=2x\left(x+15\right)
Me whakakore te \pi ki ngā taha e rua.
450=2x^{2}+30x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+15.
2x^{2}+30x=450
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2x^{2}+30x}{2}=\frac{450}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{30}{2}x=\frac{450}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+15x=\frac{450}{2}
Whakawehe 30 ki te 2.
x^{2}+15x=225
Whakawehe 450 ki te 2.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=225+\left(\frac{15}{2}\right)^{2}
Whakawehea te 15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{2}. Nā, tāpiria te pūrua o te \frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+15x+\frac{225}{4}=225+\frac{225}{4}
Pūruatia \frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+15x+\frac{225}{4}=\frac{1125}{4}
Tāpiri 225 ki te \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{1125}{4}
Tauwehea x^{2}+15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{1125}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{15}{2}=\frac{15\sqrt{5}}{2} x+\frac{15}{2}=-\frac{15\sqrt{5}}{2}
Whakarūnātia.
x=\frac{15\sqrt{5}-15}{2} x=\frac{-15\sqrt{5}-15}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.