Whakaoti mō m
m=11
Tohaina
Kua tāruatia ki te papatopenga
450+195m-975=\left(m-2\right)\times 180
Whakamahia te āhuatanga tohatoha hei whakarea te m-5 ki te 195.
-525+195m=\left(m-2\right)\times 180
Tangohia te 975 i te 450, ka -525.
-525+195m=180m-360
Whakamahia te āhuatanga tohatoha hei whakarea te m-2 ki te 180.
-525+195m-180m=-360
Tangohia te 180m mai i ngā taha e rua.
-525+15m=-360
Pahekotia te 195m me -180m, ka 15m.
15m=-360+525
Me tāpiri te 525 ki ngā taha e rua.
15m=165
Tāpirihia te -360 ki te 525, ka 165.
m=\frac{165}{15}
Whakawehea ngā taha e rua ki te 15.
m=11
Whakawehea te 165 ki te 15, kia riro ko 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}