Tauwehe
5\left(3s-4\right)^{2}
Aromātai
5\left(3s-4\right)^{2}
Tohaina
Kua tāruatia ki te papatopenga
5\left(9s^{2}-24s+16\right)
Tauwehea te 5.
\left(3s-4\right)^{2}
Whakaarohia te 9s^{2}-24s+16. Whakamahia te tikanga tātai pūrua pā, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, ina a=3s, ina b=4.
5\left(3s-4\right)^{2}
Me tuhi anō te kīanga whakatauwehe katoa.
factor(45s^{2}-120s+80)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(45,-120,80)=5
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
5\left(9s^{2}-24s+16\right)
Tauwehea te 5.
\sqrt{9s^{2}}=3s
Kimihia te pūtakerua o te kīanga tau ārahi, 9s^{2}.
\sqrt{16}=4
Kimihia te pūtakerua o te kīanga tau autō, 16.
5\left(3s-4\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
45s^{2}-120s+80=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 45\times 80}}{2\times 45}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-\left(-120\right)±\sqrt{14400-4\times 45\times 80}}{2\times 45}
Pūrua -120.
s=\frac{-\left(-120\right)±\sqrt{14400-180\times 80}}{2\times 45}
Whakareatia -4 ki te 45.
s=\frac{-\left(-120\right)±\sqrt{14400-14400}}{2\times 45}
Whakareatia -180 ki te 80.
s=\frac{-\left(-120\right)±\sqrt{0}}{2\times 45}
Tāpiri 14400 ki te -14400.
s=\frac{-\left(-120\right)±0}{2\times 45}
Tuhia te pūtakerua o te 0.
s=\frac{120±0}{2\times 45}
Ko te tauaro o -120 ko 120.
s=\frac{120±0}{90}
Whakareatia 2 ki te 45.
45s^{2}-120s+80=45\left(s-\frac{4}{3}\right)\left(s-\frac{4}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{4}{3} mō te x_{1} me te \frac{4}{3} mō te x_{2}.
45s^{2}-120s+80=45\times \frac{3s-4}{3}\left(s-\frac{4}{3}\right)
Tango \frac{4}{3} mai i s mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
45s^{2}-120s+80=45\times \frac{3s-4}{3}\times \frac{3s-4}{3}
Tango \frac{4}{3} mai i s mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
45s^{2}-120s+80=45\times \frac{\left(3s-4\right)\left(3s-4\right)}{3\times 3}
Whakareatia \frac{3s-4}{3} ki te \frac{3s-4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
45s^{2}-120s+80=45\times \frac{\left(3s-4\right)\left(3s-4\right)}{9}
Whakareatia 3 ki te 3.
45s^{2}-120s+80=5\left(3s-4\right)\left(3s-4\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 45 me te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}