Whakaoti mō x
x = \frac{\sqrt{2005} + 45}{2} \approx 44.888613177
x=\frac{45-\sqrt{2005}}{2}\approx 0.111386823
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 45-xx=5
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 45-x^{2}=5
Whakareatia te x ki te x, ka x^{2}.
x\times 45-x^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
-x^{2}+45x-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-45±\sqrt{45^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 45 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Pūrua 45.
x=\frac{-45±\sqrt{2025+4\left(-5\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-45±\sqrt{2025-20}}{2\left(-1\right)}
Whakareatia 4 ki te -5.
x=\frac{-45±\sqrt{2005}}{2\left(-1\right)}
Tāpiri 2025 ki te -20.
x=\frac{-45±\sqrt{2005}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{2005}-45}{-2}
Nā, me whakaoti te whārite x=\frac{-45±\sqrt{2005}}{-2} ina he tāpiri te ±. Tāpiri -45 ki te \sqrt{2005}.
x=\frac{45-\sqrt{2005}}{2}
Whakawehe -45+\sqrt{2005} ki te -2.
x=\frac{-\sqrt{2005}-45}{-2}
Nā, me whakaoti te whārite x=\frac{-45±\sqrt{2005}}{-2} ina he tango te ±. Tango \sqrt{2005} mai i -45.
x=\frac{\sqrt{2005}+45}{2}
Whakawehe -45-\sqrt{2005} ki te -2.
x=\frac{45-\sqrt{2005}}{2} x=\frac{\sqrt{2005}+45}{2}
Kua oti te whārite te whakatau.
x\times 45-xx=5
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 45-x^{2}=5
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+45x=5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+45x}{-1}=\frac{5}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{45}{-1}x=\frac{5}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-45x=\frac{5}{-1}
Whakawehe 45 ki te -1.
x^{2}-45x=-5
Whakawehe 5 ki te -1.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=-5+\left(-\frac{45}{2}\right)^{2}
Whakawehea te -45, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{45}{2}. Nā, tāpiria te pūrua o te -\frac{45}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-45x+\frac{2025}{4}=-5+\frac{2025}{4}
Pūruatia -\frac{45}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-45x+\frac{2025}{4}=\frac{2005}{4}
Tāpiri -5 ki te \frac{2025}{4}.
\left(x-\frac{45}{2}\right)^{2}=\frac{2005}{4}
Tauwehea x^{2}-45x+\frac{2025}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{2005}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{45}{2}=\frac{\sqrt{2005}}{2} x-\frac{45}{2}=-\frac{\sqrt{2005}}{2}
Whakarūnātia.
x=\frac{\sqrt{2005}+45}{2} x=\frac{45-\sqrt{2005}}{2}
Me tāpiri \frac{45}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}