Tauwehe
-\left(x-9\right)\left(x+5\right)
Aromātai
-\left(x-9\right)\left(x+5\right)
Graph
Pātaitai
Polynomial
45 + 4 x - x ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}+4x+45
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=4 ab=-45=-45
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx+45. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,45 -3,15 -5,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -45.
-1+45=44 -3+15=12 -5+9=4
Tātaihia te tapeke mō ia takirua.
a=9 b=-5
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(-x^{2}+9x\right)+\left(-5x+45\right)
Tuhia anō te -x^{2}+4x+45 hei \left(-x^{2}+9x\right)+\left(-5x+45\right).
-x\left(x-9\right)-5\left(x-9\right)
Tauwehea te -x i te tuatahi me te -5 i te rōpū tuarua.
\left(x-9\right)\left(-x-5\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
-x^{2}+4x+45=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 45}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 45}}{2\left(-1\right)}
Pūrua 4.
x=\frac{-4±\sqrt{16+4\times 45}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-4±\sqrt{16+180}}{2\left(-1\right)}
Whakareatia 4 ki te 45.
x=\frac{-4±\sqrt{196}}{2\left(-1\right)}
Tāpiri 16 ki te 180.
x=\frac{-4±14}{2\left(-1\right)}
Tuhia te pūtakerua o te 196.
x=\frac{-4±14}{-2}
Whakareatia 2 ki te -1.
x=\frac{10}{-2}
Nā, me whakaoti te whārite x=\frac{-4±14}{-2} ina he tāpiri te ±. Tāpiri -4 ki te 14.
x=-5
Whakawehe 10 ki te -2.
x=-\frac{18}{-2}
Nā, me whakaoti te whārite x=\frac{-4±14}{-2} ina he tango te ±. Tango 14 mai i -4.
x=9
Whakawehe -18 ki te -2.
-x^{2}+4x+45=-\left(x-\left(-5\right)\right)\left(x-9\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -5 mō te x_{1} me te 9 mō te x_{2}.
-x^{2}+4x+45=-\left(x+5\right)\left(x-9\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}