45 + 12 \% \text { of } 45
Aromātai
\frac{252}{5}=50.4
Tauwehe
\frac{2 ^ {2} \cdot 3 ^ {2} \cdot 7}{5} = 50\frac{2}{5} = 50.4
Tohaina
Kua tāruatia ki te papatopenga
45+\frac{3}{25}\times 45
Whakahekea te hautanga \frac{12}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
45+\frac{3\times 45}{25}
Tuhia te \frac{3}{25}\times 45 hei hautanga kotahi.
45+\frac{135}{25}
Whakareatia te 3 ki te 45, ka 135.
45+\frac{27}{5}
Whakahekea te hautanga \frac{135}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{225}{5}+\frac{27}{5}
Me tahuri te 45 ki te hautau \frac{225}{5}.
\frac{225+27}{5}
Tā te mea he rite te tauraro o \frac{225}{5} me \frac{27}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{252}{5}
Tāpirihia te 225 ki te 27, ka 252.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}