Whakaoti mō t
t = \frac{61}{11} = 5\frac{6}{11} \approx 5.545454545
t=0
Tohaina
Kua tāruatia ki te papatopenga
t\left(44t-244\right)=0
Tauwehea te t.
t=0 t=\frac{61}{11}
Hei kimi otinga whārite, me whakaoti te t=0 me te 44t-244=0.
44t^{2}-244t=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-244\right)±\sqrt{\left(-244\right)^{2}}}{2\times 44}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 44 mō a, -244 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-244\right)±244}{2\times 44}
Tuhia te pūtakerua o te \left(-244\right)^{2}.
t=\frac{244±244}{2\times 44}
Ko te tauaro o -244 ko 244.
t=\frac{244±244}{88}
Whakareatia 2 ki te 44.
t=\frac{488}{88}
Nā, me whakaoti te whārite t=\frac{244±244}{88} ina he tāpiri te ±. Tāpiri 244 ki te 244.
t=\frac{61}{11}
Whakahekea te hautanga \frac{488}{88} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
t=\frac{0}{88}
Nā, me whakaoti te whārite t=\frac{244±244}{88} ina he tango te ±. Tango 244 mai i 244.
t=0
Whakawehe 0 ki te 88.
t=\frac{61}{11} t=0
Kua oti te whārite te whakatau.
44t^{2}-244t=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{44t^{2}-244t}{44}=\frac{0}{44}
Whakawehea ngā taha e rua ki te 44.
t^{2}+\left(-\frac{244}{44}\right)t=\frac{0}{44}
Mā te whakawehe ki te 44 ka wetekia te whakareanga ki te 44.
t^{2}-\frac{61}{11}t=\frac{0}{44}
Whakahekea te hautanga \frac{-244}{44} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
t^{2}-\frac{61}{11}t=0
Whakawehe 0 ki te 44.
t^{2}-\frac{61}{11}t+\left(-\frac{61}{22}\right)^{2}=\left(-\frac{61}{22}\right)^{2}
Whakawehea te -\frac{61}{11}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{61}{22}. Nā, tāpiria te pūrua o te -\frac{61}{22} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{61}{11}t+\frac{3721}{484}=\frac{3721}{484}
Pūruatia -\frac{61}{22} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(t-\frac{61}{22}\right)^{2}=\frac{3721}{484}
Tauwehea t^{2}-\frac{61}{11}t+\frac{3721}{484}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{61}{22}\right)^{2}}=\sqrt{\frac{3721}{484}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{61}{22}=\frac{61}{22} t-\frac{61}{22}=-\frac{61}{22}
Whakarūnātia.
t=\frac{61}{11} t=0
Me tāpiri \frac{61}{22} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}