Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

44x^{2}\times 3=1
Tātaitia te pūtakerua o 9 kia tae ki 3.
132x^{2}=1
Whakareatia te 44 ki te 3, ka 132.
x^{2}=\frac{1}{132}
Whakawehea ngā taha e rua ki te 132.
x=\frac{\sqrt{33}}{66} x=-\frac{\sqrt{33}}{66}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
44x^{2}\times 3=1
Tātaitia te pūtakerua o 9 kia tae ki 3.
132x^{2}=1
Whakareatia te 44 ki te 3, ka 132.
132x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 132\left(-1\right)}}{2\times 132}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 132 mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 132\left(-1\right)}}{2\times 132}
Pūrua 0.
x=\frac{0±\sqrt{-528\left(-1\right)}}{2\times 132}
Whakareatia -4 ki te 132.
x=\frac{0±\sqrt{528}}{2\times 132}
Whakareatia -528 ki te -1.
x=\frac{0±4\sqrt{33}}{2\times 132}
Tuhia te pūtakerua o te 528.
x=\frac{0±4\sqrt{33}}{264}
Whakareatia 2 ki te 132.
x=\frac{\sqrt{33}}{66}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{33}}{264} ina he tāpiri te ±.
x=-\frac{\sqrt{33}}{66}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{33}}{264} ina he tango te ±.
x=\frac{\sqrt{33}}{66} x=-\frac{\sqrt{33}}{66}
Kua oti te whārite te whakatau.