Whakaoti mō x
x=\frac{2\sqrt{36383465}+3304}{29809}\approx 0.515540325
x=\frac{3304-2\sqrt{36383465}}{29809}\approx -0.293862308
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
43897+204 { x }^{ 2 } =-59414 { x }^{ 2 } +13216x+52929
Tohaina
Kua tāruatia ki te papatopenga
43897+204x^{2}+59414x^{2}=13216x+52929
Me tāpiri te 59414x^{2} ki ngā taha e rua.
43897+59618x^{2}=13216x+52929
Pahekotia te 204x^{2} me 59414x^{2}, ka 59618x^{2}.
43897+59618x^{2}-13216x=52929
Tangohia te 13216x mai i ngā taha e rua.
43897+59618x^{2}-13216x-52929=0
Tangohia te 52929 mai i ngā taha e rua.
-9032+59618x^{2}-13216x=0
Tangohia te 52929 i te 43897, ka -9032.
59618x^{2}-13216x-9032=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-13216\right)±\sqrt{\left(-13216\right)^{2}-4\times 59618\left(-9032\right)}}{2\times 59618}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 59618 mō a, -13216 mō b, me -9032 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13216\right)±\sqrt{174662656-4\times 59618\left(-9032\right)}}{2\times 59618}
Pūrua -13216.
x=\frac{-\left(-13216\right)±\sqrt{174662656-238472\left(-9032\right)}}{2\times 59618}
Whakareatia -4 ki te 59618.
x=\frac{-\left(-13216\right)±\sqrt{174662656+2153879104}}{2\times 59618}
Whakareatia -238472 ki te -9032.
x=\frac{-\left(-13216\right)±\sqrt{2328541760}}{2\times 59618}
Tāpiri 174662656 ki te 2153879104.
x=\frac{-\left(-13216\right)±8\sqrt{36383465}}{2\times 59618}
Tuhia te pūtakerua o te 2328541760.
x=\frac{13216±8\sqrt{36383465}}{2\times 59618}
Ko te tauaro o -13216 ko 13216.
x=\frac{13216±8\sqrt{36383465}}{119236}
Whakareatia 2 ki te 59618.
x=\frac{8\sqrt{36383465}+13216}{119236}
Nā, me whakaoti te whārite x=\frac{13216±8\sqrt{36383465}}{119236} ina he tāpiri te ±. Tāpiri 13216 ki te 8\sqrt{36383465}.
x=\frac{2\sqrt{36383465}+3304}{29809}
Whakawehe 13216+8\sqrt{36383465} ki te 119236.
x=\frac{13216-8\sqrt{36383465}}{119236}
Nā, me whakaoti te whārite x=\frac{13216±8\sqrt{36383465}}{119236} ina he tango te ±. Tango 8\sqrt{36383465} mai i 13216.
x=\frac{3304-2\sqrt{36383465}}{29809}
Whakawehe 13216-8\sqrt{36383465} ki te 119236.
x=\frac{2\sqrt{36383465}+3304}{29809} x=\frac{3304-2\sqrt{36383465}}{29809}
Kua oti te whārite te whakatau.
43897+204x^{2}+59414x^{2}=13216x+52929
Me tāpiri te 59414x^{2} ki ngā taha e rua.
43897+59618x^{2}=13216x+52929
Pahekotia te 204x^{2} me 59414x^{2}, ka 59618x^{2}.
43897+59618x^{2}-13216x=52929
Tangohia te 13216x mai i ngā taha e rua.
59618x^{2}-13216x=52929-43897
Tangohia te 43897 mai i ngā taha e rua.
59618x^{2}-13216x=9032
Tangohia te 43897 i te 52929, ka 9032.
\frac{59618x^{2}-13216x}{59618}=\frac{9032}{59618}
Whakawehea ngā taha e rua ki te 59618.
x^{2}+\left(-\frac{13216}{59618}\right)x=\frac{9032}{59618}
Mā te whakawehe ki te 59618 ka wetekia te whakareanga ki te 59618.
x^{2}-\frac{6608}{29809}x=\frac{9032}{59618}
Whakahekea te hautanga \frac{-13216}{59618} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{6608}{29809}x=\frac{4516}{29809}
Whakahekea te hautanga \frac{9032}{59618} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{6608}{29809}x+\left(-\frac{3304}{29809}\right)^{2}=\frac{4516}{29809}+\left(-\frac{3304}{29809}\right)^{2}
Whakawehea te -\frac{6608}{29809}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3304}{29809}. Nā, tāpiria te pūrua o te -\frac{3304}{29809} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{6608}{29809}x+\frac{10916416}{888576481}=\frac{4516}{29809}+\frac{10916416}{888576481}
Pūruatia -\frac{3304}{29809} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{6608}{29809}x+\frac{10916416}{888576481}=\frac{145533860}{888576481}
Tāpiri \frac{4516}{29809} ki te \frac{10916416}{888576481} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3304}{29809}\right)^{2}=\frac{145533860}{888576481}
Tauwehea x^{2}-\frac{6608}{29809}x+\frac{10916416}{888576481}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3304}{29809}\right)^{2}}=\sqrt{\frac{145533860}{888576481}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3304}{29809}=\frac{2\sqrt{36383465}}{29809} x-\frac{3304}{29809}=-\frac{2\sqrt{36383465}}{29809}
Whakarūnātia.
x=\frac{2\sqrt{36383465}+3304}{29809} x=\frac{3304-2\sqrt{36383465}}{29809}
Me tāpiri \frac{3304}{29809} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}