Whakaoti mō x
x = \frac{\sqrt{165} - 9}{2} \approx 1.922616289
x=\frac{-\sqrt{165}-9}{2}\approx -10.922616289
Graph
Tohaina
Kua tāruatia ki te papatopenga
42=2x^{2}+18x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+9.
2x^{2}+18x=42
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+18x-42=0
Tangohia te 42 mai i ngā taha e rua.
x=\frac{-18±\sqrt{18^{2}-4\times 2\left(-42\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 18 mō b, me -42 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 2\left(-42\right)}}{2\times 2}
Pūrua 18.
x=\frac{-18±\sqrt{324-8\left(-42\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-18±\sqrt{324+336}}{2\times 2}
Whakareatia -8 ki te -42.
x=\frac{-18±\sqrt{660}}{2\times 2}
Tāpiri 324 ki te 336.
x=\frac{-18±2\sqrt{165}}{2\times 2}
Tuhia te pūtakerua o te 660.
x=\frac{-18±2\sqrt{165}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{165}-18}{4}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{165}}{4} ina he tāpiri te ±. Tāpiri -18 ki te 2\sqrt{165}.
x=\frac{\sqrt{165}-9}{2}
Whakawehe -18+2\sqrt{165} ki te 4.
x=\frac{-2\sqrt{165}-18}{4}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{165}}{4} ina he tango te ±. Tango 2\sqrt{165} mai i -18.
x=\frac{-\sqrt{165}-9}{2}
Whakawehe -18-2\sqrt{165} ki te 4.
x=\frac{\sqrt{165}-9}{2} x=\frac{-\sqrt{165}-9}{2}
Kua oti te whārite te whakatau.
42=2x^{2}+18x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+9.
2x^{2}+18x=42
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2x^{2}+18x}{2}=\frac{42}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{18}{2}x=\frac{42}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+9x=\frac{42}{2}
Whakawehe 18 ki te 2.
x^{2}+9x=21
Whakawehe 42 ki te 2.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=21+\left(\frac{9}{2}\right)^{2}
Whakawehea te 9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{2}. Nā, tāpiria te pūrua o te \frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+9x+\frac{81}{4}=21+\frac{81}{4}
Pūruatia \frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+9x+\frac{81}{4}=\frac{165}{4}
Tāpiri 21 ki te \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{165}{4}
Tauwehea x^{2}+9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{165}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{9}{2}=\frac{\sqrt{165}}{2} x+\frac{9}{2}=-\frac{\sqrt{165}}{2}
Whakarūnātia.
x=\frac{\sqrt{165}-9}{2} x=\frac{-\sqrt{165}-9}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}