Whakaoti mō x
x=-\frac{3}{14}\approx -0.214285714
x=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-5 ab=42\left(-3\right)=-126
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 42x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-126 2,-63 3,-42 6,-21 7,-18 9,-14
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -126.
1-126=-125 2-63=-61 3-42=-39 6-21=-15 7-18=-11 9-14=-5
Tātaihia te tapeke mō ia takirua.
a=-14 b=9
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(42x^{2}-14x\right)+\left(9x-3\right)
Tuhia anō te 42x^{2}-5x-3 hei \left(42x^{2}-14x\right)+\left(9x-3\right).
14x\left(3x-1\right)+3\left(3x-1\right)
Tauwehea te 14x i te tuatahi me te 3 i te rōpū tuarua.
\left(3x-1\right)\left(14x+3\right)
Whakatauwehea atu te kīanga pātahi 3x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{3} x=-\frac{3}{14}
Hei kimi otinga whārite, me whakaoti te 3x-1=0 me te 14x+3=0.
42x^{2}-5x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 42\left(-3\right)}}{2\times 42}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 42 mō a, -5 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 42\left(-3\right)}}{2\times 42}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-168\left(-3\right)}}{2\times 42}
Whakareatia -4 ki te 42.
x=\frac{-\left(-5\right)±\sqrt{25+504}}{2\times 42}
Whakareatia -168 ki te -3.
x=\frac{-\left(-5\right)±\sqrt{529}}{2\times 42}
Tāpiri 25 ki te 504.
x=\frac{-\left(-5\right)±23}{2\times 42}
Tuhia te pūtakerua o te 529.
x=\frac{5±23}{2\times 42}
Ko te tauaro o -5 ko 5.
x=\frac{5±23}{84}
Whakareatia 2 ki te 42.
x=\frac{28}{84}
Nā, me whakaoti te whārite x=\frac{5±23}{84} ina he tāpiri te ±. Tāpiri 5 ki te 23.
x=\frac{1}{3}
Whakahekea te hautanga \frac{28}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 28.
x=-\frac{18}{84}
Nā, me whakaoti te whārite x=\frac{5±23}{84} ina he tango te ±. Tango 23 mai i 5.
x=-\frac{3}{14}
Whakahekea te hautanga \frac{-18}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{1}{3} x=-\frac{3}{14}
Kua oti te whārite te whakatau.
42x^{2}-5x-3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
42x^{2}-5x-3-\left(-3\right)=-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
42x^{2}-5x=-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
42x^{2}-5x=3
Tango -3 mai i 0.
\frac{42x^{2}-5x}{42}=\frac{3}{42}
Whakawehea ngā taha e rua ki te 42.
x^{2}-\frac{5}{42}x=\frac{3}{42}
Mā te whakawehe ki te 42 ka wetekia te whakareanga ki te 42.
x^{2}-\frac{5}{42}x=\frac{1}{14}
Whakahekea te hautanga \frac{3}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{5}{42}x+\left(-\frac{5}{84}\right)^{2}=\frac{1}{14}+\left(-\frac{5}{84}\right)^{2}
Whakawehea te -\frac{5}{42}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{84}. Nā, tāpiria te pūrua o te -\frac{5}{84} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{42}x+\frac{25}{7056}=\frac{1}{14}+\frac{25}{7056}
Pūruatia -\frac{5}{84} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{42}x+\frac{25}{7056}=\frac{529}{7056}
Tāpiri \frac{1}{14} ki te \frac{25}{7056} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{84}\right)^{2}=\frac{529}{7056}
Tauwehea x^{2}-\frac{5}{42}x+\frac{25}{7056}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{84}\right)^{2}}=\sqrt{\frac{529}{7056}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{84}=\frac{23}{84} x-\frac{5}{84}=-\frac{23}{84}
Whakarūnātia.
x=\frac{1}{3} x=-\frac{3}{14}
Me tāpiri \frac{5}{84} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}