Tauwehe
\left(3m-7\right)\left(14m+3\right)
Aromātai
\left(3m-7\right)\left(14m+3\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-89 ab=42\left(-21\right)=-882
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 42m^{2}+am+bm-21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-882 2,-441 3,-294 6,-147 7,-126 9,-98 14,-63 18,-49 21,-42
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -882.
1-882=-881 2-441=-439 3-294=-291 6-147=-141 7-126=-119 9-98=-89 14-63=-49 18-49=-31 21-42=-21
Tātaihia te tapeke mō ia takirua.
a=-98 b=9
Ko te otinga te takirua ka hoatu i te tapeke -89.
\left(42m^{2}-98m\right)+\left(9m-21\right)
Tuhia anō te 42m^{2}-89m-21 hei \left(42m^{2}-98m\right)+\left(9m-21\right).
14m\left(3m-7\right)+3\left(3m-7\right)
Tauwehea te 14m i te tuatahi me te 3 i te rōpū tuarua.
\left(3m-7\right)\left(14m+3\right)
Whakatauwehea atu te kīanga pātahi 3m-7 mā te whakamahi i te āhuatanga tātai tohatoha.
42m^{2}-89m-21=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-\left(-89\right)±\sqrt{\left(-89\right)^{2}-4\times 42\left(-21\right)}}{2\times 42}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-89\right)±\sqrt{7921-4\times 42\left(-21\right)}}{2\times 42}
Pūrua -89.
m=\frac{-\left(-89\right)±\sqrt{7921-168\left(-21\right)}}{2\times 42}
Whakareatia -4 ki te 42.
m=\frac{-\left(-89\right)±\sqrt{7921+3528}}{2\times 42}
Whakareatia -168 ki te -21.
m=\frac{-\left(-89\right)±\sqrt{11449}}{2\times 42}
Tāpiri 7921 ki te 3528.
m=\frac{-\left(-89\right)±107}{2\times 42}
Tuhia te pūtakerua o te 11449.
m=\frac{89±107}{2\times 42}
Ko te tauaro o -89 ko 89.
m=\frac{89±107}{84}
Whakareatia 2 ki te 42.
m=\frac{196}{84}
Nā, me whakaoti te whārite m=\frac{89±107}{84} ina he tāpiri te ±. Tāpiri 89 ki te 107.
m=\frac{7}{3}
Whakahekea te hautanga \frac{196}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 28.
m=-\frac{18}{84}
Nā, me whakaoti te whārite m=\frac{89±107}{84} ina he tango te ±. Tango 107 mai i 89.
m=-\frac{3}{14}
Whakahekea te hautanga \frac{-18}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
42m^{2}-89m-21=42\left(m-\frac{7}{3}\right)\left(m-\left(-\frac{3}{14}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{7}{3} mō te x_{1} me te -\frac{3}{14} mō te x_{2}.
42m^{2}-89m-21=42\left(m-\frac{7}{3}\right)\left(m+\frac{3}{14}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
42m^{2}-89m-21=42\times \frac{3m-7}{3}\left(m+\frac{3}{14}\right)
Tango \frac{7}{3} mai i m mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
42m^{2}-89m-21=42\times \frac{3m-7}{3}\times \frac{14m+3}{14}
Tāpiri \frac{3}{14} ki te m mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
42m^{2}-89m-21=42\times \frac{\left(3m-7\right)\left(14m+3\right)}{3\times 14}
Whakareatia \frac{3m-7}{3} ki te \frac{14m+3}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
42m^{2}-89m-21=42\times \frac{\left(3m-7\right)\left(14m+3\right)}{42}
Whakareatia 3 ki te 14.
42m^{2}-89m-21=\left(3m-7\right)\left(14m+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 42 i roto i te 42 me te 42.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}