Whakaoti mō x (complex solution)
x=\frac{58+4\sqrt{26}i}{7}\approx 8.285714286+2.913725436i
x=\frac{-4\sqrt{26}i+58}{7}\approx 8.285714286-2.913725436i
Graph
Tohaina
Kua tāruatia ki te papatopenga
42x^{2}-696x+3240=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-696\right)±\sqrt{\left(-696\right)^{2}-4\times 42\times 3240}}{2\times 42}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 42 mō a, -696 mō b, me 3240 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-696\right)±\sqrt{484416-4\times 42\times 3240}}{2\times 42}
Pūrua -696.
x=\frac{-\left(-696\right)±\sqrt{484416-168\times 3240}}{2\times 42}
Whakareatia -4 ki te 42.
x=\frac{-\left(-696\right)±\sqrt{484416-544320}}{2\times 42}
Whakareatia -168 ki te 3240.
x=\frac{-\left(-696\right)±\sqrt{-59904}}{2\times 42}
Tāpiri 484416 ki te -544320.
x=\frac{-\left(-696\right)±48\sqrt{26}i}{2\times 42}
Tuhia te pūtakerua o te -59904.
x=\frac{696±48\sqrt{26}i}{2\times 42}
Ko te tauaro o -696 ko 696.
x=\frac{696±48\sqrt{26}i}{84}
Whakareatia 2 ki te 42.
x=\frac{696+48\sqrt{26}i}{84}
Nā, me whakaoti te whārite x=\frac{696±48\sqrt{26}i}{84} ina he tāpiri te ±. Tāpiri 696 ki te 48i\sqrt{26}.
x=\frac{58+4\sqrt{26}i}{7}
Whakawehe 696+48i\sqrt{26} ki te 84.
x=\frac{-48\sqrt{26}i+696}{84}
Nā, me whakaoti te whārite x=\frac{696±48\sqrt{26}i}{84} ina he tango te ±. Tango 48i\sqrt{26} mai i 696.
x=\frac{-4\sqrt{26}i+58}{7}
Whakawehe 696-48i\sqrt{26} ki te 84.
x=\frac{58+4\sqrt{26}i}{7} x=\frac{-4\sqrt{26}i+58}{7}
Kua oti te whārite te whakatau.
42x^{2}-696x+3240=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
42x^{2}-696x+3240-3240=-3240
Me tango 3240 mai i ngā taha e rua o te whārite.
42x^{2}-696x=-3240
Mā te tango i te 3240 i a ia ake anō ka toe ko te 0.
\frac{42x^{2}-696x}{42}=-\frac{3240}{42}
Whakawehea ngā taha e rua ki te 42.
x^{2}+\left(-\frac{696}{42}\right)x=-\frac{3240}{42}
Mā te whakawehe ki te 42 ka wetekia te whakareanga ki te 42.
x^{2}-\frac{116}{7}x=-\frac{3240}{42}
Whakahekea te hautanga \frac{-696}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-\frac{116}{7}x=-\frac{540}{7}
Whakahekea te hautanga \frac{-3240}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-\frac{116}{7}x+\left(-\frac{58}{7}\right)^{2}=-\frac{540}{7}+\left(-\frac{58}{7}\right)^{2}
Whakawehea te -\frac{116}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{58}{7}. Nā, tāpiria te pūrua o te -\frac{58}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{116}{7}x+\frac{3364}{49}=-\frac{540}{7}+\frac{3364}{49}
Pūruatia -\frac{58}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{116}{7}x+\frac{3364}{49}=-\frac{416}{49}
Tāpiri -\frac{540}{7} ki te \frac{3364}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{58}{7}\right)^{2}=-\frac{416}{49}
Tauwehea x^{2}-\frac{116}{7}x+\frac{3364}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{58}{7}\right)^{2}}=\sqrt{-\frac{416}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{58}{7}=\frac{4\sqrt{26}i}{7} x-\frac{58}{7}=-\frac{4\sqrt{26}i}{7}
Whakarūnātia.
x=\frac{58+4\sqrt{26}i}{7} x=\frac{-4\sqrt{26}i+58}{7}
Me tāpiri \frac{58}{7} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}