Aromātai
\frac{697802}{1137}\approx 613.722075638
Tauwehe
\frac{2 \cdot 7 \cdot 49843}{3 \cdot 379} = 613\frac{821}{1137} = 613.7220756376429
Tohaina
Kua tāruatia ki te papatopenga
\frac{21}{379}+458\times \frac{1\times 3+1}{3}-1+4
Whakahekea te hautanga \frac{42}{758} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{21}{379}+458\times \frac{3+1}{3}-1+4
Whakareatia te 1 ki te 3, ka 3.
\frac{21}{379}+458\times \frac{4}{3}-1+4
Tāpirihia te 3 ki te 1, ka 4.
\frac{21}{379}+\frac{458\times 4}{3}-1+4
Tuhia te 458\times \frac{4}{3} hei hautanga kotahi.
\frac{21}{379}+\frac{1832}{3}-1+4
Whakareatia te 458 ki te 4, ka 1832.
\frac{63}{1137}+\frac{694328}{1137}-1+4
Ko te maha noa iti rawa atu o 379 me 3 ko 1137. Me tahuri \frac{21}{379} me \frac{1832}{3} ki te hautau me te tautūnga 1137.
\frac{63+694328}{1137}-1+4
Tā te mea he rite te tauraro o \frac{63}{1137} me \frac{694328}{1137}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{694391}{1137}-1+4
Tāpirihia te 63 ki te 694328, ka 694391.
\frac{694391}{1137}-\frac{1137}{1137}+4
Me tahuri te 1 ki te hautau \frac{1137}{1137}.
\frac{694391-1137}{1137}+4
Tā te mea he rite te tauraro o \frac{694391}{1137} me \frac{1137}{1137}, me tango rāua mā te tango i ō raua taurunga.
\frac{693254}{1137}+4
Tangohia te 1137 i te 694391, ka 693254.
\frac{693254}{1137}+\frac{4548}{1137}
Me tahuri te 4 ki te hautau \frac{4548}{1137}.
\frac{693254+4548}{1137}
Tā te mea he rite te tauraro o \frac{693254}{1137} me \frac{4548}{1137}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{697802}{1137}
Tāpirihia te 693254 ki te 4548, ka 697802.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}