Aromātai
\frac{1679}{45}\approx 37.311111111
Tauwehe
\frac{23 \cdot 73}{3 ^ {2} \cdot 5} = 37\frac{14}{45} = 37.31111111111111
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
41 \times \frac{ 5 }{ 6 } +(41-3 \frac{ 4 }{ 15 } ) \div 12
Tohaina
Kua tāruatia ki te papatopenga
\frac{41\times 5}{6}+\frac{41-\frac{3\times 15+4}{15}}{12}
Tuhia te 41\times \frac{5}{6} hei hautanga kotahi.
\frac{205}{6}+\frac{41-\frac{3\times 15+4}{15}}{12}
Whakareatia te 41 ki te 5, ka 205.
\frac{205}{6}+\frac{41-\frac{45+4}{15}}{12}
Whakareatia te 3 ki te 15, ka 45.
\frac{205}{6}+\frac{41-\frac{49}{15}}{12}
Tāpirihia te 45 ki te 4, ka 49.
\frac{205}{6}+\frac{\frac{615}{15}-\frac{49}{15}}{12}
Me tahuri te 41 ki te hautau \frac{615}{15}.
\frac{205}{6}+\frac{\frac{615-49}{15}}{12}
Tā te mea he rite te tauraro o \frac{615}{15} me \frac{49}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{205}{6}+\frac{\frac{566}{15}}{12}
Tangohia te 49 i te 615, ka 566.
\frac{205}{6}+\frac{566}{15\times 12}
Tuhia te \frac{\frac{566}{15}}{12} hei hautanga kotahi.
\frac{205}{6}+\frac{566}{180}
Whakareatia te 15 ki te 12, ka 180.
\frac{205}{6}+\frac{283}{90}
Whakahekea te hautanga \frac{566}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3075}{90}+\frac{283}{90}
Ko te maha noa iti rawa atu o 6 me 90 ko 90. Me tahuri \frac{205}{6} me \frac{283}{90} ki te hautau me te tautūnga 90.
\frac{3075+283}{90}
Tā te mea he rite te tauraro o \frac{3075}{90} me \frac{283}{90}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3358}{90}
Tāpirihia te 3075 ki te 283, ka 3358.
\frac{1679}{45}
Whakahekea te hautanga \frac{3358}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}