Aromātai
\frac{64105}{4}=16026.25
Tauwehe
\frac{5 \cdot 12821}{2 ^ {2}} = 16026\frac{1}{4} = 16026.25
Tohaina
Kua tāruatia ki te papatopenga
400-\frac{5}{32-2\left(18-2\left(16-\left(-2\right)^{4}\right)\right)}+\left(-5\right)^{6}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 2 kia riro ai te 6.
400-\frac{5}{32-2\left(18-2\left(16-16\right)\right)}+\left(-5\right)^{6}
Tātaihia te -2 mā te pū o 4, kia riro ko 16.
400-\frac{5}{32-2\left(18-2\times 0\right)}+\left(-5\right)^{6}
Tangohia te 16 i te 16, ka 0.
400-\frac{5}{32-2\left(18-0\right)}+\left(-5\right)^{6}
Whakareatia te 2 ki te 0, ka 0.
400-\frac{5}{32-2\times 18}+\left(-5\right)^{6}
Tangohia te 0 i te 18, ka 18.
400-\frac{5}{32-36}+\left(-5\right)^{6}
Whakareatia te -2 ki te 18, ka -36.
400-\frac{5}{-4}+\left(-5\right)^{6}
Tangohia te 36 i te 32, ka -4.
400-\left(-\frac{5}{4}\right)+\left(-5\right)^{6}
Ka taea te hautanga \frac{5}{-4} te tuhi anō ko -\frac{5}{4} mā te tango i te tohu tōraro.
400+\frac{5}{4}+\left(-5\right)^{6}
Ko te tauaro o -\frac{5}{4} ko \frac{5}{4}.
\frac{1600}{4}+\frac{5}{4}+\left(-5\right)^{6}
Me tahuri te 400 ki te hautau \frac{1600}{4}.
\frac{1600+5}{4}+\left(-5\right)^{6}
Tā te mea he rite te tauraro o \frac{1600}{4} me \frac{5}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1605}{4}+\left(-5\right)^{6}
Tāpirihia te 1600 ki te 5, ka 1605.
\frac{1605}{4}+15625
Tātaihia te -5 mā te pū o 6, kia riro ko 15625.
\frac{1605}{4}+\frac{62500}{4}
Me tahuri te 15625 ki te hautau \frac{62500}{4}.
\frac{1605+62500}{4}
Tā te mea he rite te tauraro o \frac{1605}{4} me \frac{62500}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{64105}{4}
Tāpirihia te 1605 ki te 62500, ka 64105.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}