Whakaoti mō I
I=2\sqrt{2}\approx 2.828427125
I=-2\sqrt{2}\approx -2.828427125
Pātaitai
Polynomial
400 = I ^ { 2 } 50
Tohaina
Kua tāruatia ki te papatopenga
\frac{400}{50}=I^{2}
Whakawehea ngā taha e rua ki te 50.
8=I^{2}
Whakawehea te 400 ki te 50, kia riro ko 8.
I^{2}=8
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
I=2\sqrt{2} I=-2\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{400}{50}=I^{2}
Whakawehea ngā taha e rua ki te 50.
8=I^{2}
Whakawehea te 400 ki te 50, kia riro ko 8.
I^{2}=8
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
I^{2}-8=0
Tangohia te 8 mai i ngā taha e rua.
I=\frac{0±\sqrt{0^{2}-4\left(-8\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
I=\frac{0±\sqrt{-4\left(-8\right)}}{2}
Pūrua 0.
I=\frac{0±\sqrt{32}}{2}
Whakareatia -4 ki te -8.
I=\frac{0±4\sqrt{2}}{2}
Tuhia te pūtakerua o te 32.
I=2\sqrt{2}
Nā, me whakaoti te whārite I=\frac{0±4\sqrt{2}}{2} ina he tāpiri te ±.
I=-2\sqrt{2}
Nā, me whakaoti te whārite I=\frac{0±4\sqrt{2}}{2} ina he tango te ±.
I=2\sqrt{2} I=-2\sqrt{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}